Step |
Hyp |
Ref |
Expression |
1 |
|
prmrec.f |
|- F = ( n e. NN |-> sum_ k e. ( Prime i^i ( 1 ... n ) ) ( 1 / k ) ) |
2 |
|
inss2 |
|- ( Prime i^i ( 1 ... n ) ) C_ ( 1 ... n ) |
3 |
|
elinel2 |
|- ( k e. ( Prime i^i ( 1 ... n ) ) -> k e. ( 1 ... n ) ) |
4 |
|
elfznn |
|- ( k e. ( 1 ... n ) -> k e. NN ) |
5 |
|
nnrecre |
|- ( k e. NN -> ( 1 / k ) e. RR ) |
6 |
5
|
recnd |
|- ( k e. NN -> ( 1 / k ) e. CC ) |
7 |
3 4 6
|
3syl |
|- ( k e. ( Prime i^i ( 1 ... n ) ) -> ( 1 / k ) e. CC ) |
8 |
7
|
rgen |
|- A. k e. ( Prime i^i ( 1 ... n ) ) ( 1 / k ) e. CC |
9 |
2 8
|
pm3.2i |
|- ( ( Prime i^i ( 1 ... n ) ) C_ ( 1 ... n ) /\ A. k e. ( Prime i^i ( 1 ... n ) ) ( 1 / k ) e. CC ) |
10 |
|
fzfi |
|- ( 1 ... n ) e. Fin |
11 |
10
|
olci |
|- ( ( 1 ... n ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... n ) e. Fin ) |
12 |
|
sumss2 |
|- ( ( ( ( Prime i^i ( 1 ... n ) ) C_ ( 1 ... n ) /\ A. k e. ( Prime i^i ( 1 ... n ) ) ( 1 / k ) e. CC ) /\ ( ( 1 ... n ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... n ) e. Fin ) ) -> sum_ k e. ( Prime i^i ( 1 ... n ) ) ( 1 / k ) = sum_ k e. ( 1 ... n ) if ( k e. ( Prime i^i ( 1 ... n ) ) , ( 1 / k ) , 0 ) ) |
13 |
9 11 12
|
mp2an |
|- sum_ k e. ( Prime i^i ( 1 ... n ) ) ( 1 / k ) = sum_ k e. ( 1 ... n ) if ( k e. ( Prime i^i ( 1 ... n ) ) , ( 1 / k ) , 0 ) |
14 |
|
elin |
|- ( k e. ( Prime i^i ( 1 ... n ) ) <-> ( k e. Prime /\ k e. ( 1 ... n ) ) ) |
15 |
14
|
rbaib |
|- ( k e. ( 1 ... n ) -> ( k e. ( Prime i^i ( 1 ... n ) ) <-> k e. Prime ) ) |
16 |
15
|
ifbid |
|- ( k e. ( 1 ... n ) -> if ( k e. ( Prime i^i ( 1 ... n ) ) , ( 1 / k ) , 0 ) = if ( k e. Prime , ( 1 / k ) , 0 ) ) |
17 |
16
|
sumeq2i |
|- sum_ k e. ( 1 ... n ) if ( k e. ( Prime i^i ( 1 ... n ) ) , ( 1 / k ) , 0 ) = sum_ k e. ( 1 ... n ) if ( k e. Prime , ( 1 / k ) , 0 ) |
18 |
13 17
|
eqtri |
|- sum_ k e. ( Prime i^i ( 1 ... n ) ) ( 1 / k ) = sum_ k e. ( 1 ... n ) if ( k e. Prime , ( 1 / k ) , 0 ) |
19 |
4
|
adantl |
|- ( ( n e. NN /\ k e. ( 1 ... n ) ) -> k e. NN ) |
20 |
|
prmnn |
|- ( k e. Prime -> k e. NN ) |
21 |
20 6
|
syl |
|- ( k e. Prime -> ( 1 / k ) e. CC ) |
22 |
21
|
adantl |
|- ( ( T. /\ k e. Prime ) -> ( 1 / k ) e. CC ) |
23 |
|
0cnd |
|- ( ( T. /\ -. k e. Prime ) -> 0 e. CC ) |
24 |
22 23
|
ifclda |
|- ( T. -> if ( k e. Prime , ( 1 / k ) , 0 ) e. CC ) |
25 |
24
|
mptru |
|- if ( k e. Prime , ( 1 / k ) , 0 ) e. CC |
26 |
|
eleq1w |
|- ( m = k -> ( m e. Prime <-> k e. Prime ) ) |
27 |
|
oveq2 |
|- ( m = k -> ( 1 / m ) = ( 1 / k ) ) |
28 |
26 27
|
ifbieq1d |
|- ( m = k -> if ( m e. Prime , ( 1 / m ) , 0 ) = if ( k e. Prime , ( 1 / k ) , 0 ) ) |
29 |
28
|
cbvmptv |
|- ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) = ( k e. NN |-> if ( k e. Prime , ( 1 / k ) , 0 ) ) |
30 |
29
|
fvmpt2 |
|- ( ( k e. NN /\ if ( k e. Prime , ( 1 / k ) , 0 ) e. CC ) -> ( ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ` k ) = if ( k e. Prime , ( 1 / k ) , 0 ) ) |
31 |
19 25 30
|
sylancl |
|- ( ( n e. NN /\ k e. ( 1 ... n ) ) -> ( ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ` k ) = if ( k e. Prime , ( 1 / k ) , 0 ) ) |
32 |
|
id |
|- ( n e. NN -> n e. NN ) |
33 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
34 |
32 33
|
eleqtrdi |
|- ( n e. NN -> n e. ( ZZ>= ` 1 ) ) |
35 |
25
|
a1i |
|- ( ( n e. NN /\ k e. ( 1 ... n ) ) -> if ( k e. Prime , ( 1 / k ) , 0 ) e. CC ) |
36 |
31 34 35
|
fsumser |
|- ( n e. NN -> sum_ k e. ( 1 ... n ) if ( k e. Prime , ( 1 / k ) , 0 ) = ( seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) ` n ) ) |
37 |
18 36
|
eqtrid |
|- ( n e. NN -> sum_ k e. ( Prime i^i ( 1 ... n ) ) ( 1 / k ) = ( seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) ` n ) ) |
38 |
37
|
mpteq2ia |
|- ( n e. NN |-> sum_ k e. ( Prime i^i ( 1 ... n ) ) ( 1 / k ) ) = ( n e. NN |-> ( seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) ` n ) ) |
39 |
|
1z |
|- 1 e. ZZ |
40 |
|
seqfn |
|- ( 1 e. ZZ -> seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) Fn ( ZZ>= ` 1 ) ) |
41 |
39 40
|
ax-mp |
|- seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) Fn ( ZZ>= ` 1 ) |
42 |
33
|
fneq2i |
|- ( seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) Fn NN <-> seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) Fn ( ZZ>= ` 1 ) ) |
43 |
41 42
|
mpbir |
|- seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) Fn NN |
44 |
|
dffn5 |
|- ( seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) Fn NN <-> seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) = ( n e. NN |-> ( seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) ` n ) ) ) |
45 |
43 44
|
mpbi |
|- seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) = ( n e. NN |-> ( seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) ` n ) ) |
46 |
38 1 45
|
3eqtr4i |
|- F = seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) |
47 |
29
|
prmreclem6 |
|- -. seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) e. dom ~~> |
48 |
46 47
|
eqneltri |
|- -. F e. dom ~~> |