| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							prmrec.f | 
							 |-  F = ( n e. NN |-> sum_ k e. ( Prime i^i ( 1 ... n ) ) ( 1 / k ) )  | 
						
						
							| 2 | 
							
								
							 | 
							inss2 | 
							 |-  ( Prime i^i ( 1 ... n ) ) C_ ( 1 ... n )  | 
						
						
							| 3 | 
							
								
							 | 
							elinel2 | 
							 |-  ( k e. ( Prime i^i ( 1 ... n ) ) -> k e. ( 1 ... n ) )  | 
						
						
							| 4 | 
							
								
							 | 
							elfznn | 
							 |-  ( k e. ( 1 ... n ) -> k e. NN )  | 
						
						
							| 5 | 
							
								
							 | 
							nnrecre | 
							 |-  ( k e. NN -> ( 1 / k ) e. RR )  | 
						
						
							| 6 | 
							
								5
							 | 
							recnd | 
							 |-  ( k e. NN -> ( 1 / k ) e. CC )  | 
						
						
							| 7 | 
							
								3 4 6
							 | 
							3syl | 
							 |-  ( k e. ( Prime i^i ( 1 ... n ) ) -> ( 1 / k ) e. CC )  | 
						
						
							| 8 | 
							
								7
							 | 
							rgen | 
							 |-  A. k e. ( Prime i^i ( 1 ... n ) ) ( 1 / k ) e. CC  | 
						
						
							| 9 | 
							
								2 8
							 | 
							pm3.2i | 
							 |-  ( ( Prime i^i ( 1 ... n ) ) C_ ( 1 ... n ) /\ A. k e. ( Prime i^i ( 1 ... n ) ) ( 1 / k ) e. CC )  | 
						
						
							| 10 | 
							
								
							 | 
							fzfi | 
							 |-  ( 1 ... n ) e. Fin  | 
						
						
							| 11 | 
							
								10
							 | 
							olci | 
							 |-  ( ( 1 ... n ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... n ) e. Fin )  | 
						
						
							| 12 | 
							
								
							 | 
							sumss2 | 
							 |-  ( ( ( ( Prime i^i ( 1 ... n ) ) C_ ( 1 ... n ) /\ A. k e. ( Prime i^i ( 1 ... n ) ) ( 1 / k ) e. CC ) /\ ( ( 1 ... n ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... n ) e. Fin ) ) -> sum_ k e. ( Prime i^i ( 1 ... n ) ) ( 1 / k ) = sum_ k e. ( 1 ... n ) if ( k e. ( Prime i^i ( 1 ... n ) ) , ( 1 / k ) , 0 ) )  | 
						
						
							| 13 | 
							
								9 11 12
							 | 
							mp2an | 
							 |-  sum_ k e. ( Prime i^i ( 1 ... n ) ) ( 1 / k ) = sum_ k e. ( 1 ... n ) if ( k e. ( Prime i^i ( 1 ... n ) ) , ( 1 / k ) , 0 )  | 
						
						
							| 14 | 
							
								
							 | 
							elin | 
							 |-  ( k e. ( Prime i^i ( 1 ... n ) ) <-> ( k e. Prime /\ k e. ( 1 ... n ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							rbaib | 
							 |-  ( k e. ( 1 ... n ) -> ( k e. ( Prime i^i ( 1 ... n ) ) <-> k e. Prime ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							ifbid | 
							 |-  ( k e. ( 1 ... n ) -> if ( k e. ( Prime i^i ( 1 ... n ) ) , ( 1 / k ) , 0 ) = if ( k e. Prime , ( 1 / k ) , 0 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							sumeq2i | 
							 |-  sum_ k e. ( 1 ... n ) if ( k e. ( Prime i^i ( 1 ... n ) ) , ( 1 / k ) , 0 ) = sum_ k e. ( 1 ... n ) if ( k e. Prime , ( 1 / k ) , 0 )  | 
						
						
							| 18 | 
							
								13 17
							 | 
							eqtri | 
							 |-  sum_ k e. ( Prime i^i ( 1 ... n ) ) ( 1 / k ) = sum_ k e. ( 1 ... n ) if ( k e. Prime , ( 1 / k ) , 0 )  | 
						
						
							| 19 | 
							
								4
							 | 
							adantl | 
							 |-  ( ( n e. NN /\ k e. ( 1 ... n ) ) -> k e. NN )  | 
						
						
							| 20 | 
							
								
							 | 
							prmnn | 
							 |-  ( k e. Prime -> k e. NN )  | 
						
						
							| 21 | 
							
								20 6
							 | 
							syl | 
							 |-  ( k e. Prime -> ( 1 / k ) e. CC )  | 
						
						
							| 22 | 
							
								21
							 | 
							adantl | 
							 |-  ( ( T. /\ k e. Prime ) -> ( 1 / k ) e. CC )  | 
						
						
							| 23 | 
							
								
							 | 
							0cnd | 
							 |-  ( ( T. /\ -. k e. Prime ) -> 0 e. CC )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							ifclda | 
							 |-  ( T. -> if ( k e. Prime , ( 1 / k ) , 0 ) e. CC )  | 
						
						
							| 25 | 
							
								24
							 | 
							mptru | 
							 |-  if ( k e. Prime , ( 1 / k ) , 0 ) e. CC  | 
						
						
							| 26 | 
							
								
							 | 
							eleq1w | 
							 |-  ( m = k -> ( m e. Prime <-> k e. Prime ) )  | 
						
						
							| 27 | 
							
								
							 | 
							oveq2 | 
							 |-  ( m = k -> ( 1 / m ) = ( 1 / k ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							ifbieq1d | 
							 |-  ( m = k -> if ( m e. Prime , ( 1 / m ) , 0 ) = if ( k e. Prime , ( 1 / k ) , 0 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							cbvmptv | 
							 |-  ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) = ( k e. NN |-> if ( k e. Prime , ( 1 / k ) , 0 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							fvmpt2 | 
							 |-  ( ( k e. NN /\ if ( k e. Prime , ( 1 / k ) , 0 ) e. CC ) -> ( ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ` k ) = if ( k e. Prime , ( 1 / k ) , 0 ) )  | 
						
						
							| 31 | 
							
								19 25 30
							 | 
							sylancl | 
							 |-  ( ( n e. NN /\ k e. ( 1 ... n ) ) -> ( ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ` k ) = if ( k e. Prime , ( 1 / k ) , 0 ) )  | 
						
						
							| 32 | 
							
								
							 | 
							id | 
							 |-  ( n e. NN -> n e. NN )  | 
						
						
							| 33 | 
							
								
							 | 
							nnuz | 
							 |-  NN = ( ZZ>= ` 1 )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							eleqtrdi | 
							 |-  ( n e. NN -> n e. ( ZZ>= ` 1 ) )  | 
						
						
							| 35 | 
							
								25
							 | 
							a1i | 
							 |-  ( ( n e. NN /\ k e. ( 1 ... n ) ) -> if ( k e. Prime , ( 1 / k ) , 0 ) e. CC )  | 
						
						
							| 36 | 
							
								31 34 35
							 | 
							fsumser | 
							 |-  ( n e. NN -> sum_ k e. ( 1 ... n ) if ( k e. Prime , ( 1 / k ) , 0 ) = ( seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) ` n ) )  | 
						
						
							| 37 | 
							
								18 36
							 | 
							eqtrid | 
							 |-  ( n e. NN -> sum_ k e. ( Prime i^i ( 1 ... n ) ) ( 1 / k ) = ( seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) ` n ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							mpteq2ia | 
							 |-  ( n e. NN |-> sum_ k e. ( Prime i^i ( 1 ... n ) ) ( 1 / k ) ) = ( n e. NN |-> ( seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) ` n ) )  | 
						
						
							| 39 | 
							
								
							 | 
							1z | 
							 |-  1 e. ZZ  | 
						
						
							| 40 | 
							
								
							 | 
							seqfn | 
							 |-  ( 1 e. ZZ -> seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) Fn ( ZZ>= ` 1 ) )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							ax-mp | 
							 |-  seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) Fn ( ZZ>= ` 1 )  | 
						
						
							| 42 | 
							
								33
							 | 
							fneq2i | 
							 |-  ( seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) Fn NN <-> seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) Fn ( ZZ>= ` 1 ) )  | 
						
						
							| 43 | 
							
								41 42
							 | 
							mpbir | 
							 |-  seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) Fn NN  | 
						
						
							| 44 | 
							
								
							 | 
							dffn5 | 
							 |-  ( seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) Fn NN <-> seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) = ( n e. NN |-> ( seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) ` n ) ) )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							mpbi | 
							 |-  seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) = ( n e. NN |-> ( seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) ` n ) )  | 
						
						
							| 46 | 
							
								38 1 45
							 | 
							3eqtr4i | 
							 |-  F = seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) )  | 
						
						
							| 47 | 
							
								29
							 | 
							prmreclem6 | 
							 |-  -. seq 1 ( + , ( m e. NN |-> if ( m e. Prime , ( 1 / m ) , 0 ) ) ) e. dom ~~>  | 
						
						
							| 48 | 
							
								46 47
							 | 
							eqneltri | 
							 |-  -. F e. dom ~~>  |