| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmrec.1 |
|- F = ( n e. NN |-> if ( n e. Prime , ( 1 / n ) , 0 ) ) |
| 2 |
|
prmrec.2 |
|- ( ph -> K e. NN ) |
| 3 |
|
prmrec.3 |
|- ( ph -> N e. NN ) |
| 4 |
|
prmrec.4 |
|- M = { n e. ( 1 ... N ) | A. p e. ( Prime \ ( 1 ... K ) ) -. p || n } |
| 5 |
|
prmrec.5 |
|- ( ph -> seq 1 ( + , F ) e. dom ~~> ) |
| 6 |
|
prmrec.6 |
|- ( ph -> sum_ k e. ( ZZ>= ` ( K + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) < ( 1 / 2 ) ) |
| 7 |
|
prmrec.7 |
|- W = ( p e. NN |-> { n e. ( 1 ... N ) | ( p e. Prime /\ p || n ) } ) |
| 8 |
|
oveq2 |
|- ( x = K -> ( ( K + 1 ) ... x ) = ( ( K + 1 ) ... K ) ) |
| 9 |
8
|
iuneq1d |
|- ( x = K -> U_ k e. ( ( K + 1 ) ... x ) ( W ` k ) = U_ k e. ( ( K + 1 ) ... K ) ( W ` k ) ) |
| 10 |
9
|
fveq2d |
|- ( x = K -> ( # ` U_ k e. ( ( K + 1 ) ... x ) ( W ` k ) ) = ( # ` U_ k e. ( ( K + 1 ) ... K ) ( W ` k ) ) ) |
| 11 |
8
|
sumeq1d |
|- ( x = K -> sum_ k e. ( ( K + 1 ) ... x ) if ( k e. Prime , ( 1 / k ) , 0 ) = sum_ k e. ( ( K + 1 ) ... K ) if ( k e. Prime , ( 1 / k ) , 0 ) ) |
| 12 |
11
|
oveq2d |
|- ( x = K -> ( N x. sum_ k e. ( ( K + 1 ) ... x ) if ( k e. Prime , ( 1 / k ) , 0 ) ) = ( N x. sum_ k e. ( ( K + 1 ) ... K ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) |
| 13 |
10 12
|
breq12d |
|- ( x = K -> ( ( # ` U_ k e. ( ( K + 1 ) ... x ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... x ) if ( k e. Prime , ( 1 / k ) , 0 ) ) <-> ( # ` U_ k e. ( ( K + 1 ) ... K ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... K ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) ) |
| 14 |
13
|
imbi2d |
|- ( x = K -> ( ( ph -> ( # ` U_ k e. ( ( K + 1 ) ... x ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... x ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) <-> ( ph -> ( # ` U_ k e. ( ( K + 1 ) ... K ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... K ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) ) ) |
| 15 |
|
oveq2 |
|- ( x = j -> ( ( K + 1 ) ... x ) = ( ( K + 1 ) ... j ) ) |
| 16 |
15
|
iuneq1d |
|- ( x = j -> U_ k e. ( ( K + 1 ) ... x ) ( W ` k ) = U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) |
| 17 |
16
|
fveq2d |
|- ( x = j -> ( # ` U_ k e. ( ( K + 1 ) ... x ) ( W ` k ) ) = ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) ) |
| 18 |
15
|
sumeq1d |
|- ( x = j -> sum_ k e. ( ( K + 1 ) ... x ) if ( k e. Prime , ( 1 / k ) , 0 ) = sum_ k e. ( ( K + 1 ) ... j ) if ( k e. Prime , ( 1 / k ) , 0 ) ) |
| 19 |
18
|
oveq2d |
|- ( x = j -> ( N x. sum_ k e. ( ( K + 1 ) ... x ) if ( k e. Prime , ( 1 / k ) , 0 ) ) = ( N x. sum_ k e. ( ( K + 1 ) ... j ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) |
| 20 |
17 19
|
breq12d |
|- ( x = j -> ( ( # ` U_ k e. ( ( K + 1 ) ... x ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... x ) if ( k e. Prime , ( 1 / k ) , 0 ) ) <-> ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... j ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) ) |
| 21 |
20
|
imbi2d |
|- ( x = j -> ( ( ph -> ( # ` U_ k e. ( ( K + 1 ) ... x ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... x ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) <-> ( ph -> ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... j ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) ) ) |
| 22 |
|
oveq2 |
|- ( x = ( j + 1 ) -> ( ( K + 1 ) ... x ) = ( ( K + 1 ) ... ( j + 1 ) ) ) |
| 23 |
22
|
iuneq1d |
|- ( x = ( j + 1 ) -> U_ k e. ( ( K + 1 ) ... x ) ( W ` k ) = U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) ) |
| 24 |
23
|
fveq2d |
|- ( x = ( j + 1 ) -> ( # ` U_ k e. ( ( K + 1 ) ... x ) ( W ` k ) ) = ( # ` U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) ) ) |
| 25 |
22
|
sumeq1d |
|- ( x = ( j + 1 ) -> sum_ k e. ( ( K + 1 ) ... x ) if ( k e. Prime , ( 1 / k ) , 0 ) = sum_ k e. ( ( K + 1 ) ... ( j + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) ) |
| 26 |
25
|
oveq2d |
|- ( x = ( j + 1 ) -> ( N x. sum_ k e. ( ( K + 1 ) ... x ) if ( k e. Prime , ( 1 / k ) , 0 ) ) = ( N x. sum_ k e. ( ( K + 1 ) ... ( j + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) |
| 27 |
24 26
|
breq12d |
|- ( x = ( j + 1 ) -> ( ( # ` U_ k e. ( ( K + 1 ) ... x ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... x ) if ( k e. Prime , ( 1 / k ) , 0 ) ) <-> ( # ` U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... ( j + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) ) |
| 28 |
27
|
imbi2d |
|- ( x = ( j + 1 ) -> ( ( ph -> ( # ` U_ k e. ( ( K + 1 ) ... x ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... x ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) <-> ( ph -> ( # ` U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... ( j + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) ) ) |
| 29 |
|
oveq2 |
|- ( x = N -> ( ( K + 1 ) ... x ) = ( ( K + 1 ) ... N ) ) |
| 30 |
29
|
iuneq1d |
|- ( x = N -> U_ k e. ( ( K + 1 ) ... x ) ( W ` k ) = U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) |
| 31 |
30
|
fveq2d |
|- ( x = N -> ( # ` U_ k e. ( ( K + 1 ) ... x ) ( W ` k ) ) = ( # ` U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) ) |
| 32 |
29
|
sumeq1d |
|- ( x = N -> sum_ k e. ( ( K + 1 ) ... x ) if ( k e. Prime , ( 1 / k ) , 0 ) = sum_ k e. ( ( K + 1 ) ... N ) if ( k e. Prime , ( 1 / k ) , 0 ) ) |
| 33 |
32
|
oveq2d |
|- ( x = N -> ( N x. sum_ k e. ( ( K + 1 ) ... x ) if ( k e. Prime , ( 1 / k ) , 0 ) ) = ( N x. sum_ k e. ( ( K + 1 ) ... N ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) |
| 34 |
31 33
|
breq12d |
|- ( x = N -> ( ( # ` U_ k e. ( ( K + 1 ) ... x ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... x ) if ( k e. Prime , ( 1 / k ) , 0 ) ) <-> ( # ` U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... N ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) ) |
| 35 |
34
|
imbi2d |
|- ( x = N -> ( ( ph -> ( # ` U_ k e. ( ( K + 1 ) ... x ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... x ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) <-> ( ph -> ( # ` U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... N ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) ) ) |
| 36 |
|
0le0 |
|- 0 <_ 0 |
| 37 |
3
|
nncnd |
|- ( ph -> N e. CC ) |
| 38 |
37
|
mul01d |
|- ( ph -> ( N x. 0 ) = 0 ) |
| 39 |
36 38
|
breqtrrid |
|- ( ph -> 0 <_ ( N x. 0 ) ) |
| 40 |
2
|
nnred |
|- ( ph -> K e. RR ) |
| 41 |
40
|
ltp1d |
|- ( ph -> K < ( K + 1 ) ) |
| 42 |
2
|
nnzd |
|- ( ph -> K e. ZZ ) |
| 43 |
42
|
peano2zd |
|- ( ph -> ( K + 1 ) e. ZZ ) |
| 44 |
|
fzn |
|- ( ( ( K + 1 ) e. ZZ /\ K e. ZZ ) -> ( K < ( K + 1 ) <-> ( ( K + 1 ) ... K ) = (/) ) ) |
| 45 |
43 42 44
|
syl2anc |
|- ( ph -> ( K < ( K + 1 ) <-> ( ( K + 1 ) ... K ) = (/) ) ) |
| 46 |
41 45
|
mpbid |
|- ( ph -> ( ( K + 1 ) ... K ) = (/) ) |
| 47 |
46
|
iuneq1d |
|- ( ph -> U_ k e. ( ( K + 1 ) ... K ) ( W ` k ) = U_ k e. (/) ( W ` k ) ) |
| 48 |
|
0iun |
|- U_ k e. (/) ( W ` k ) = (/) |
| 49 |
47 48
|
eqtrdi |
|- ( ph -> U_ k e. ( ( K + 1 ) ... K ) ( W ` k ) = (/) ) |
| 50 |
49
|
fveq2d |
|- ( ph -> ( # ` U_ k e. ( ( K + 1 ) ... K ) ( W ` k ) ) = ( # ` (/) ) ) |
| 51 |
|
hash0 |
|- ( # ` (/) ) = 0 |
| 52 |
50 51
|
eqtrdi |
|- ( ph -> ( # ` U_ k e. ( ( K + 1 ) ... K ) ( W ` k ) ) = 0 ) |
| 53 |
46
|
sumeq1d |
|- ( ph -> sum_ k e. ( ( K + 1 ) ... K ) if ( k e. Prime , ( 1 / k ) , 0 ) = sum_ k e. (/) if ( k e. Prime , ( 1 / k ) , 0 ) ) |
| 54 |
|
sum0 |
|- sum_ k e. (/) if ( k e. Prime , ( 1 / k ) , 0 ) = 0 |
| 55 |
53 54
|
eqtrdi |
|- ( ph -> sum_ k e. ( ( K + 1 ) ... K ) if ( k e. Prime , ( 1 / k ) , 0 ) = 0 ) |
| 56 |
55
|
oveq2d |
|- ( ph -> ( N x. sum_ k e. ( ( K + 1 ) ... K ) if ( k e. Prime , ( 1 / k ) , 0 ) ) = ( N x. 0 ) ) |
| 57 |
39 52 56
|
3brtr4d |
|- ( ph -> ( # ` U_ k e. ( ( K + 1 ) ... K ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... K ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) |
| 58 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
| 59 |
|
elfzuz |
|- ( k e. ( ( K + 1 ) ... j ) -> k e. ( ZZ>= ` ( K + 1 ) ) ) |
| 60 |
2
|
peano2nnd |
|- ( ph -> ( K + 1 ) e. NN ) |
| 61 |
|
eluznn |
|- ( ( ( K + 1 ) e. NN /\ k e. ( ZZ>= ` ( K + 1 ) ) ) -> k e. NN ) |
| 62 |
60 61
|
sylan |
|- ( ( ph /\ k e. ( ZZ>= ` ( K + 1 ) ) ) -> k e. NN ) |
| 63 |
|
eleq1 |
|- ( p = k -> ( p e. Prime <-> k e. Prime ) ) |
| 64 |
|
breq1 |
|- ( p = k -> ( p || n <-> k || n ) ) |
| 65 |
63 64
|
anbi12d |
|- ( p = k -> ( ( p e. Prime /\ p || n ) <-> ( k e. Prime /\ k || n ) ) ) |
| 66 |
65
|
rabbidv |
|- ( p = k -> { n e. ( 1 ... N ) | ( p e. Prime /\ p || n ) } = { n e. ( 1 ... N ) | ( k e. Prime /\ k || n ) } ) |
| 67 |
|
ovex |
|- ( 1 ... N ) e. _V |
| 68 |
67
|
rabex |
|- { n e. ( 1 ... N ) | ( k e. Prime /\ k || n ) } e. _V |
| 69 |
66 7 68
|
fvmpt |
|- ( k e. NN -> ( W ` k ) = { n e. ( 1 ... N ) | ( k e. Prime /\ k || n ) } ) |
| 70 |
69
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( W ` k ) = { n e. ( 1 ... N ) | ( k e. Prime /\ k || n ) } ) |
| 71 |
|
ssrab2 |
|- { n e. ( 1 ... N ) | ( k e. Prime /\ k || n ) } C_ ( 1 ... N ) |
| 72 |
70 71
|
eqsstrdi |
|- ( ( ph /\ k e. NN ) -> ( W ` k ) C_ ( 1 ... N ) ) |
| 73 |
62 72
|
syldan |
|- ( ( ph /\ k e. ( ZZ>= ` ( K + 1 ) ) ) -> ( W ` k ) C_ ( 1 ... N ) ) |
| 74 |
59 73
|
sylan2 |
|- ( ( ph /\ k e. ( ( K + 1 ) ... j ) ) -> ( W ` k ) C_ ( 1 ... N ) ) |
| 75 |
74
|
ralrimiva |
|- ( ph -> A. k e. ( ( K + 1 ) ... j ) ( W ` k ) C_ ( 1 ... N ) ) |
| 76 |
75
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> A. k e. ( ( K + 1 ) ... j ) ( W ` k ) C_ ( 1 ... N ) ) |
| 77 |
|
iunss |
|- ( U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) C_ ( 1 ... N ) <-> A. k e. ( ( K + 1 ) ... j ) ( W ` k ) C_ ( 1 ... N ) ) |
| 78 |
76 77
|
sylibr |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) C_ ( 1 ... N ) ) |
| 79 |
|
ssfi |
|- ( ( ( 1 ... N ) e. Fin /\ U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) C_ ( 1 ... N ) ) -> U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) e. Fin ) |
| 80 |
58 78 79
|
sylancr |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) e. Fin ) |
| 81 |
|
hashcl |
|- ( U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) e. Fin -> ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) e. NN0 ) |
| 82 |
80 81
|
syl |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) e. NN0 ) |
| 83 |
82
|
nn0red |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) e. RR ) |
| 84 |
3
|
nnred |
|- ( ph -> N e. RR ) |
| 85 |
84
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> N e. RR ) |
| 86 |
|
fzfid |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( ( K + 1 ) ... j ) e. Fin ) |
| 87 |
60
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( K + 1 ) e. NN ) |
| 88 |
87 59 61
|
syl2an |
|- ( ( ( ph /\ j e. ( ZZ>= ` K ) ) /\ k e. ( ( K + 1 ) ... j ) ) -> k e. NN ) |
| 89 |
|
nnrecre |
|- ( k e. NN -> ( 1 / k ) e. RR ) |
| 90 |
|
0re |
|- 0 e. RR |
| 91 |
|
ifcl |
|- ( ( ( 1 / k ) e. RR /\ 0 e. RR ) -> if ( k e. Prime , ( 1 / k ) , 0 ) e. RR ) |
| 92 |
89 90 91
|
sylancl |
|- ( k e. NN -> if ( k e. Prime , ( 1 / k ) , 0 ) e. RR ) |
| 93 |
88 92
|
syl |
|- ( ( ( ph /\ j e. ( ZZ>= ` K ) ) /\ k e. ( ( K + 1 ) ... j ) ) -> if ( k e. Prime , ( 1 / k ) , 0 ) e. RR ) |
| 94 |
86 93
|
fsumrecl |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> sum_ k e. ( ( K + 1 ) ... j ) if ( k e. Prime , ( 1 / k ) , 0 ) e. RR ) |
| 95 |
85 94
|
remulcld |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( N x. sum_ k e. ( ( K + 1 ) ... j ) if ( k e. Prime , ( 1 / k ) , 0 ) ) e. RR ) |
| 96 |
|
prmnn |
|- ( ( j + 1 ) e. Prime -> ( j + 1 ) e. NN ) |
| 97 |
96
|
nnrecred |
|- ( ( j + 1 ) e. Prime -> ( 1 / ( j + 1 ) ) e. RR ) |
| 98 |
97
|
adantl |
|- ( ( ( ph /\ j e. ( ZZ>= ` K ) ) /\ ( j + 1 ) e. Prime ) -> ( 1 / ( j + 1 ) ) e. RR ) |
| 99 |
|
0red |
|- ( ( ( ph /\ j e. ( ZZ>= ` K ) ) /\ -. ( j + 1 ) e. Prime ) -> 0 e. RR ) |
| 100 |
98 99
|
ifclda |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) e. RR ) |
| 101 |
85 100
|
remulcld |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( N x. if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) e. RR ) |
| 102 |
83 95 101
|
leadd1d |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... j ) if ( k e. Prime , ( 1 / k ) , 0 ) ) <-> ( ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) + ( N x. if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) ) <_ ( ( N x. sum_ k e. ( ( K + 1 ) ... j ) if ( k e. Prime , ( 1 / k ) , 0 ) ) + ( N x. if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) ) ) ) |
| 103 |
|
eluzp1p1 |
|- ( j e. ( ZZ>= ` K ) -> ( j + 1 ) e. ( ZZ>= ` ( K + 1 ) ) ) |
| 104 |
103
|
adantl |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( j + 1 ) e. ( ZZ>= ` ( K + 1 ) ) ) |
| 105 |
|
simpl |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ph ) |
| 106 |
|
elfzuz |
|- ( k e. ( ( K + 1 ) ... ( j + 1 ) ) -> k e. ( ZZ>= ` ( K + 1 ) ) ) |
| 107 |
92
|
recnd |
|- ( k e. NN -> if ( k e. Prime , ( 1 / k ) , 0 ) e. CC ) |
| 108 |
62 107
|
syl |
|- ( ( ph /\ k e. ( ZZ>= ` ( K + 1 ) ) ) -> if ( k e. Prime , ( 1 / k ) , 0 ) e. CC ) |
| 109 |
105 106 108
|
syl2an |
|- ( ( ( ph /\ j e. ( ZZ>= ` K ) ) /\ k e. ( ( K + 1 ) ... ( j + 1 ) ) ) -> if ( k e. Prime , ( 1 / k ) , 0 ) e. CC ) |
| 110 |
|
eleq1 |
|- ( k = ( j + 1 ) -> ( k e. Prime <-> ( j + 1 ) e. Prime ) ) |
| 111 |
|
oveq2 |
|- ( k = ( j + 1 ) -> ( 1 / k ) = ( 1 / ( j + 1 ) ) ) |
| 112 |
110 111
|
ifbieq1d |
|- ( k = ( j + 1 ) -> if ( k e. Prime , ( 1 / k ) , 0 ) = if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) |
| 113 |
104 109 112
|
fsumm1 |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> sum_ k e. ( ( K + 1 ) ... ( j + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) = ( sum_ k e. ( ( K + 1 ) ... ( ( j + 1 ) - 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) + if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) ) |
| 114 |
|
eluzelz |
|- ( j e. ( ZZ>= ` K ) -> j e. ZZ ) |
| 115 |
114
|
adantl |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> j e. ZZ ) |
| 116 |
115
|
zcnd |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> j e. CC ) |
| 117 |
|
ax-1cn |
|- 1 e. CC |
| 118 |
|
pncan |
|- ( ( j e. CC /\ 1 e. CC ) -> ( ( j + 1 ) - 1 ) = j ) |
| 119 |
116 117 118
|
sylancl |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( ( j + 1 ) - 1 ) = j ) |
| 120 |
119
|
oveq2d |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( ( K + 1 ) ... ( ( j + 1 ) - 1 ) ) = ( ( K + 1 ) ... j ) ) |
| 121 |
120
|
sumeq1d |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> sum_ k e. ( ( K + 1 ) ... ( ( j + 1 ) - 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) = sum_ k e. ( ( K + 1 ) ... j ) if ( k e. Prime , ( 1 / k ) , 0 ) ) |
| 122 |
121
|
oveq1d |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( sum_ k e. ( ( K + 1 ) ... ( ( j + 1 ) - 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) + if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) = ( sum_ k e. ( ( K + 1 ) ... j ) if ( k e. Prime , ( 1 / k ) , 0 ) + if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) ) |
| 123 |
113 122
|
eqtrd |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> sum_ k e. ( ( K + 1 ) ... ( j + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) = ( sum_ k e. ( ( K + 1 ) ... j ) if ( k e. Prime , ( 1 / k ) , 0 ) + if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) ) |
| 124 |
123
|
oveq2d |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( N x. sum_ k e. ( ( K + 1 ) ... ( j + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) ) = ( N x. ( sum_ k e. ( ( K + 1 ) ... j ) if ( k e. Prime , ( 1 / k ) , 0 ) + if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) ) ) |
| 125 |
37
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> N e. CC ) |
| 126 |
94
|
recnd |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> sum_ k e. ( ( K + 1 ) ... j ) if ( k e. Prime , ( 1 / k ) , 0 ) e. CC ) |
| 127 |
100
|
recnd |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) e. CC ) |
| 128 |
125 126 127
|
adddid |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( N x. ( sum_ k e. ( ( K + 1 ) ... j ) if ( k e. Prime , ( 1 / k ) , 0 ) + if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) ) = ( ( N x. sum_ k e. ( ( K + 1 ) ... j ) if ( k e. Prime , ( 1 / k ) , 0 ) ) + ( N x. if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) ) ) |
| 129 |
124 128
|
eqtrd |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( N x. sum_ k e. ( ( K + 1 ) ... ( j + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) ) = ( ( N x. sum_ k e. ( ( K + 1 ) ... j ) if ( k e. Prime , ( 1 / k ) , 0 ) ) + ( N x. if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) ) ) |
| 130 |
129
|
breq2d |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( ( ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) + ( N x. if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... ( j + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) ) <-> ( ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) + ( N x. if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) ) <_ ( ( N x. sum_ k e. ( ( K + 1 ) ... j ) if ( k e. Prime , ( 1 / k ) , 0 ) ) + ( N x. if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) ) ) ) |
| 131 |
102 130
|
bitr4d |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... j ) if ( k e. Prime , ( 1 / k ) , 0 ) ) <-> ( ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) + ( N x. if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... ( j + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) ) |
| 132 |
106 73
|
sylan2 |
|- ( ( ph /\ k e. ( ( K + 1 ) ... ( j + 1 ) ) ) -> ( W ` k ) C_ ( 1 ... N ) ) |
| 133 |
132
|
ralrimiva |
|- ( ph -> A. k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) C_ ( 1 ... N ) ) |
| 134 |
133
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> A. k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) C_ ( 1 ... N ) ) |
| 135 |
|
iunss |
|- ( U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) C_ ( 1 ... N ) <-> A. k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) C_ ( 1 ... N ) ) |
| 136 |
134 135
|
sylibr |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) C_ ( 1 ... N ) ) |
| 137 |
|
ssfi |
|- ( ( ( 1 ... N ) e. Fin /\ U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) C_ ( 1 ... N ) ) -> U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) e. Fin ) |
| 138 |
58 136 137
|
sylancr |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) e. Fin ) |
| 139 |
|
hashcl |
|- ( U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) e. Fin -> ( # ` U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) ) e. NN0 ) |
| 140 |
138 139
|
syl |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( # ` U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) ) e. NN0 ) |
| 141 |
140
|
nn0red |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( # ` U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) ) e. RR ) |
| 142 |
|
fveq2 |
|- ( k = ( j + 1 ) -> ( W ` k ) = ( W ` ( j + 1 ) ) ) |
| 143 |
142
|
sseq1d |
|- ( k = ( j + 1 ) -> ( ( W ` k ) C_ ( 1 ... N ) <-> ( W ` ( j + 1 ) ) C_ ( 1 ... N ) ) ) |
| 144 |
72
|
ralrimiva |
|- ( ph -> A. k e. NN ( W ` k ) C_ ( 1 ... N ) ) |
| 145 |
144
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> A. k e. NN ( W ` k ) C_ ( 1 ... N ) ) |
| 146 |
|
eluznn |
|- ( ( K e. NN /\ j e. ( ZZ>= ` K ) ) -> j e. NN ) |
| 147 |
2 146
|
sylan |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> j e. NN ) |
| 148 |
147
|
peano2nnd |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( j + 1 ) e. NN ) |
| 149 |
143 145 148
|
rspcdva |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( W ` ( j + 1 ) ) C_ ( 1 ... N ) ) |
| 150 |
|
ssfi |
|- ( ( ( 1 ... N ) e. Fin /\ ( W ` ( j + 1 ) ) C_ ( 1 ... N ) ) -> ( W ` ( j + 1 ) ) e. Fin ) |
| 151 |
58 149 150
|
sylancr |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( W ` ( j + 1 ) ) e. Fin ) |
| 152 |
|
hashcl |
|- ( ( W ` ( j + 1 ) ) e. Fin -> ( # ` ( W ` ( j + 1 ) ) ) e. NN0 ) |
| 153 |
151 152
|
syl |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( # ` ( W ` ( j + 1 ) ) ) e. NN0 ) |
| 154 |
153
|
nn0red |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( # ` ( W ` ( j + 1 ) ) ) e. RR ) |
| 155 |
83 154
|
readdcld |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) + ( # ` ( W ` ( j + 1 ) ) ) ) e. RR ) |
| 156 |
83 101
|
readdcld |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) + ( N x. if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) ) e. RR ) |
| 157 |
43
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( K + 1 ) e. ZZ ) |
| 158 |
|
simpr |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> j e. ( ZZ>= ` K ) ) |
| 159 |
2
|
nncnd |
|- ( ph -> K e. CC ) |
| 160 |
159
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> K e. CC ) |
| 161 |
|
pncan |
|- ( ( K e. CC /\ 1 e. CC ) -> ( ( K + 1 ) - 1 ) = K ) |
| 162 |
160 117 161
|
sylancl |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( ( K + 1 ) - 1 ) = K ) |
| 163 |
162
|
fveq2d |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( ZZ>= ` ( ( K + 1 ) - 1 ) ) = ( ZZ>= ` K ) ) |
| 164 |
158 163
|
eleqtrrd |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> j e. ( ZZ>= ` ( ( K + 1 ) - 1 ) ) ) |
| 165 |
|
fzsuc2 |
|- ( ( ( K + 1 ) e. ZZ /\ j e. ( ZZ>= ` ( ( K + 1 ) - 1 ) ) ) -> ( ( K + 1 ) ... ( j + 1 ) ) = ( ( ( K + 1 ) ... j ) u. { ( j + 1 ) } ) ) |
| 166 |
157 164 165
|
syl2anc |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( ( K + 1 ) ... ( j + 1 ) ) = ( ( ( K + 1 ) ... j ) u. { ( j + 1 ) } ) ) |
| 167 |
166
|
iuneq1d |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) = U_ k e. ( ( ( K + 1 ) ... j ) u. { ( j + 1 ) } ) ( W ` k ) ) |
| 168 |
|
iunxun |
|- U_ k e. ( ( ( K + 1 ) ... j ) u. { ( j + 1 ) } ) ( W ` k ) = ( U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) u. U_ k e. { ( j + 1 ) } ( W ` k ) ) |
| 169 |
|
ovex |
|- ( j + 1 ) e. _V |
| 170 |
169 142
|
iunxsn |
|- U_ k e. { ( j + 1 ) } ( W ` k ) = ( W ` ( j + 1 ) ) |
| 171 |
170
|
uneq2i |
|- ( U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) u. U_ k e. { ( j + 1 ) } ( W ` k ) ) = ( U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) u. ( W ` ( j + 1 ) ) ) |
| 172 |
168 171
|
eqtri |
|- U_ k e. ( ( ( K + 1 ) ... j ) u. { ( j + 1 ) } ) ( W ` k ) = ( U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) u. ( W ` ( j + 1 ) ) ) |
| 173 |
167 172
|
eqtrdi |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) = ( U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) u. ( W ` ( j + 1 ) ) ) ) |
| 174 |
173
|
fveq2d |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( # ` U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) ) = ( # ` ( U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) u. ( W ` ( j + 1 ) ) ) ) ) |
| 175 |
|
hashun2 |
|- ( ( U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) e. Fin /\ ( W ` ( j + 1 ) ) e. Fin ) -> ( # ` ( U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) u. ( W ` ( j + 1 ) ) ) ) <_ ( ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) + ( # ` ( W ` ( j + 1 ) ) ) ) ) |
| 176 |
80 151 175
|
syl2anc |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( # ` ( U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) u. ( W ` ( j + 1 ) ) ) ) <_ ( ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) + ( # ` ( W ` ( j + 1 ) ) ) ) ) |
| 177 |
174 176
|
eqbrtrd |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( # ` U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) ) <_ ( ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) + ( # ` ( W ` ( j + 1 ) ) ) ) ) |
| 178 |
85 148
|
nndivred |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( N / ( j + 1 ) ) e. RR ) |
| 179 |
|
flle |
|- ( ( N / ( j + 1 ) ) e. RR -> ( |_ ` ( N / ( j + 1 ) ) ) <_ ( N / ( j + 1 ) ) ) |
| 180 |
178 179
|
syl |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( |_ ` ( N / ( j + 1 ) ) ) <_ ( N / ( j + 1 ) ) ) |
| 181 |
|
elfznn |
|- ( n e. ( 1 ... N ) -> n e. NN ) |
| 182 |
181
|
nncnd |
|- ( n e. ( 1 ... N ) -> n e. CC ) |
| 183 |
182
|
subid1d |
|- ( n e. ( 1 ... N ) -> ( n - 0 ) = n ) |
| 184 |
183
|
breq2d |
|- ( n e. ( 1 ... N ) -> ( ( j + 1 ) || ( n - 0 ) <-> ( j + 1 ) || n ) ) |
| 185 |
184
|
rabbiia |
|- { n e. ( 1 ... N ) | ( j + 1 ) || ( n - 0 ) } = { n e. ( 1 ... N ) | ( j + 1 ) || n } |
| 186 |
185
|
fveq2i |
|- ( # ` { n e. ( 1 ... N ) | ( j + 1 ) || ( n - 0 ) } ) = ( # ` { n e. ( 1 ... N ) | ( j + 1 ) || n } ) |
| 187 |
|
1zzd |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> 1 e. ZZ ) |
| 188 |
3
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 189 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 190 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 191 |
190
|
fveq2i |
|- ( ZZ>= ` ( 1 - 1 ) ) = ( ZZ>= ` 0 ) |
| 192 |
189 191
|
eqtr4i |
|- NN0 = ( ZZ>= ` ( 1 - 1 ) ) |
| 193 |
188 192
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` ( 1 - 1 ) ) ) |
| 194 |
193
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> N e. ( ZZ>= ` ( 1 - 1 ) ) ) |
| 195 |
|
0zd |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> 0 e. ZZ ) |
| 196 |
148 187 194 195
|
hashdvds |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( # ` { n e. ( 1 ... N ) | ( j + 1 ) || ( n - 0 ) } ) = ( ( |_ ` ( ( N - 0 ) / ( j + 1 ) ) ) - ( |_ ` ( ( ( 1 - 1 ) - 0 ) / ( j + 1 ) ) ) ) ) |
| 197 |
125
|
subid1d |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( N - 0 ) = N ) |
| 198 |
197
|
fvoveq1d |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( |_ ` ( ( N - 0 ) / ( j + 1 ) ) ) = ( |_ ` ( N / ( j + 1 ) ) ) ) |
| 199 |
190
|
oveq1i |
|- ( ( 1 - 1 ) - 0 ) = ( 0 - 0 ) |
| 200 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
| 201 |
199 200
|
eqtri |
|- ( ( 1 - 1 ) - 0 ) = 0 |
| 202 |
201
|
oveq1i |
|- ( ( ( 1 - 1 ) - 0 ) / ( j + 1 ) ) = ( 0 / ( j + 1 ) ) |
| 203 |
148
|
nncnd |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( j + 1 ) e. CC ) |
| 204 |
148
|
nnne0d |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( j + 1 ) =/= 0 ) |
| 205 |
203 204
|
div0d |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( 0 / ( j + 1 ) ) = 0 ) |
| 206 |
202 205
|
eqtrid |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( ( ( 1 - 1 ) - 0 ) / ( j + 1 ) ) = 0 ) |
| 207 |
206
|
fveq2d |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( |_ ` ( ( ( 1 - 1 ) - 0 ) / ( j + 1 ) ) ) = ( |_ ` 0 ) ) |
| 208 |
|
0z |
|- 0 e. ZZ |
| 209 |
|
flid |
|- ( 0 e. ZZ -> ( |_ ` 0 ) = 0 ) |
| 210 |
208 209
|
ax-mp |
|- ( |_ ` 0 ) = 0 |
| 211 |
207 210
|
eqtrdi |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( |_ ` ( ( ( 1 - 1 ) - 0 ) / ( j + 1 ) ) ) = 0 ) |
| 212 |
198 211
|
oveq12d |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( ( |_ ` ( ( N - 0 ) / ( j + 1 ) ) ) - ( |_ ` ( ( ( 1 - 1 ) - 0 ) / ( j + 1 ) ) ) ) = ( ( |_ ` ( N / ( j + 1 ) ) ) - 0 ) ) |
| 213 |
178
|
flcld |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( |_ ` ( N / ( j + 1 ) ) ) e. ZZ ) |
| 214 |
213
|
zcnd |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( |_ ` ( N / ( j + 1 ) ) ) e. CC ) |
| 215 |
214
|
subid1d |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( ( |_ ` ( N / ( j + 1 ) ) ) - 0 ) = ( |_ ` ( N / ( j + 1 ) ) ) ) |
| 216 |
196 212 215
|
3eqtrd |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( # ` { n e. ( 1 ... N ) | ( j + 1 ) || ( n - 0 ) } ) = ( |_ ` ( N / ( j + 1 ) ) ) ) |
| 217 |
186 216
|
eqtr3id |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( # ` { n e. ( 1 ... N ) | ( j + 1 ) || n } ) = ( |_ ` ( N / ( j + 1 ) ) ) ) |
| 218 |
125 203 204
|
divrecd |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( N / ( j + 1 ) ) = ( N x. ( 1 / ( j + 1 ) ) ) ) |
| 219 |
218
|
eqcomd |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( N x. ( 1 / ( j + 1 ) ) ) = ( N / ( j + 1 ) ) ) |
| 220 |
180 217 219
|
3brtr4d |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( # ` { n e. ( 1 ... N ) | ( j + 1 ) || n } ) <_ ( N x. ( 1 / ( j + 1 ) ) ) ) |
| 221 |
220
|
adantr |
|- ( ( ( ph /\ j e. ( ZZ>= ` K ) ) /\ ( j + 1 ) e. Prime ) -> ( # ` { n e. ( 1 ... N ) | ( j + 1 ) || n } ) <_ ( N x. ( 1 / ( j + 1 ) ) ) ) |
| 222 |
|
eleq1 |
|- ( p = ( j + 1 ) -> ( p e. Prime <-> ( j + 1 ) e. Prime ) ) |
| 223 |
|
breq1 |
|- ( p = ( j + 1 ) -> ( p || n <-> ( j + 1 ) || n ) ) |
| 224 |
222 223
|
anbi12d |
|- ( p = ( j + 1 ) -> ( ( p e. Prime /\ p || n ) <-> ( ( j + 1 ) e. Prime /\ ( j + 1 ) || n ) ) ) |
| 225 |
224
|
rabbidv |
|- ( p = ( j + 1 ) -> { n e. ( 1 ... N ) | ( p e. Prime /\ p || n ) } = { n e. ( 1 ... N ) | ( ( j + 1 ) e. Prime /\ ( j + 1 ) || n ) } ) |
| 226 |
67
|
rabex |
|- { n e. ( 1 ... N ) | ( ( j + 1 ) e. Prime /\ ( j + 1 ) || n ) } e. _V |
| 227 |
225 7 226
|
fvmpt |
|- ( ( j + 1 ) e. NN -> ( W ` ( j + 1 ) ) = { n e. ( 1 ... N ) | ( ( j + 1 ) e. Prime /\ ( j + 1 ) || n ) } ) |
| 228 |
148 227
|
syl |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( W ` ( j + 1 ) ) = { n e. ( 1 ... N ) | ( ( j + 1 ) e. Prime /\ ( j + 1 ) || n ) } ) |
| 229 |
228
|
adantr |
|- ( ( ( ph /\ j e. ( ZZ>= ` K ) ) /\ ( j + 1 ) e. Prime ) -> ( W ` ( j + 1 ) ) = { n e. ( 1 ... N ) | ( ( j + 1 ) e. Prime /\ ( j + 1 ) || n ) } ) |
| 230 |
|
simpr |
|- ( ( ( ph /\ j e. ( ZZ>= ` K ) ) /\ ( j + 1 ) e. Prime ) -> ( j + 1 ) e. Prime ) |
| 231 |
230
|
biantrurd |
|- ( ( ( ph /\ j e. ( ZZ>= ` K ) ) /\ ( j + 1 ) e. Prime ) -> ( ( j + 1 ) || n <-> ( ( j + 1 ) e. Prime /\ ( j + 1 ) || n ) ) ) |
| 232 |
231
|
rabbidv |
|- ( ( ( ph /\ j e. ( ZZ>= ` K ) ) /\ ( j + 1 ) e. Prime ) -> { n e. ( 1 ... N ) | ( j + 1 ) || n } = { n e. ( 1 ... N ) | ( ( j + 1 ) e. Prime /\ ( j + 1 ) || n ) } ) |
| 233 |
229 232
|
eqtr4d |
|- ( ( ( ph /\ j e. ( ZZ>= ` K ) ) /\ ( j + 1 ) e. Prime ) -> ( W ` ( j + 1 ) ) = { n e. ( 1 ... N ) | ( j + 1 ) || n } ) |
| 234 |
233
|
fveq2d |
|- ( ( ( ph /\ j e. ( ZZ>= ` K ) ) /\ ( j + 1 ) e. Prime ) -> ( # ` ( W ` ( j + 1 ) ) ) = ( # ` { n e. ( 1 ... N ) | ( j + 1 ) || n } ) ) |
| 235 |
|
iftrue |
|- ( ( j + 1 ) e. Prime -> if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) = ( 1 / ( j + 1 ) ) ) |
| 236 |
235
|
adantl |
|- ( ( ( ph /\ j e. ( ZZ>= ` K ) ) /\ ( j + 1 ) e. Prime ) -> if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) = ( 1 / ( j + 1 ) ) ) |
| 237 |
236
|
oveq2d |
|- ( ( ( ph /\ j e. ( ZZ>= ` K ) ) /\ ( j + 1 ) e. Prime ) -> ( N x. if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) = ( N x. ( 1 / ( j + 1 ) ) ) ) |
| 238 |
221 234 237
|
3brtr4d |
|- ( ( ( ph /\ j e. ( ZZ>= ` K ) ) /\ ( j + 1 ) e. Prime ) -> ( # ` ( W ` ( j + 1 ) ) ) <_ ( N x. if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) ) |
| 239 |
36
|
a1i |
|- ( ( ( ph /\ j e. ( ZZ>= ` K ) ) /\ -. ( j + 1 ) e. Prime ) -> 0 <_ 0 ) |
| 240 |
|
simpl |
|- ( ( ( j + 1 ) e. Prime /\ ( j + 1 ) || n ) -> ( j + 1 ) e. Prime ) |
| 241 |
240
|
con3i |
|- ( -. ( j + 1 ) e. Prime -> -. ( ( j + 1 ) e. Prime /\ ( j + 1 ) || n ) ) |
| 242 |
241
|
ralrimivw |
|- ( -. ( j + 1 ) e. Prime -> A. n e. ( 1 ... N ) -. ( ( j + 1 ) e. Prime /\ ( j + 1 ) || n ) ) |
| 243 |
|
rabeq0 |
|- ( { n e. ( 1 ... N ) | ( ( j + 1 ) e. Prime /\ ( j + 1 ) || n ) } = (/) <-> A. n e. ( 1 ... N ) -. ( ( j + 1 ) e. Prime /\ ( j + 1 ) || n ) ) |
| 244 |
242 243
|
sylibr |
|- ( -. ( j + 1 ) e. Prime -> { n e. ( 1 ... N ) | ( ( j + 1 ) e. Prime /\ ( j + 1 ) || n ) } = (/) ) |
| 245 |
228 244
|
sylan9eq |
|- ( ( ( ph /\ j e. ( ZZ>= ` K ) ) /\ -. ( j + 1 ) e. Prime ) -> ( W ` ( j + 1 ) ) = (/) ) |
| 246 |
245
|
fveq2d |
|- ( ( ( ph /\ j e. ( ZZ>= ` K ) ) /\ -. ( j + 1 ) e. Prime ) -> ( # ` ( W ` ( j + 1 ) ) ) = ( # ` (/) ) ) |
| 247 |
246 51
|
eqtrdi |
|- ( ( ( ph /\ j e. ( ZZ>= ` K ) ) /\ -. ( j + 1 ) e. Prime ) -> ( # ` ( W ` ( j + 1 ) ) ) = 0 ) |
| 248 |
|
iffalse |
|- ( -. ( j + 1 ) e. Prime -> if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) = 0 ) |
| 249 |
248
|
oveq2d |
|- ( -. ( j + 1 ) e. Prime -> ( N x. if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) = ( N x. 0 ) ) |
| 250 |
38
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( N x. 0 ) = 0 ) |
| 251 |
249 250
|
sylan9eqr |
|- ( ( ( ph /\ j e. ( ZZ>= ` K ) ) /\ -. ( j + 1 ) e. Prime ) -> ( N x. if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) = 0 ) |
| 252 |
239 247 251
|
3brtr4d |
|- ( ( ( ph /\ j e. ( ZZ>= ` K ) ) /\ -. ( j + 1 ) e. Prime ) -> ( # ` ( W ` ( j + 1 ) ) ) <_ ( N x. if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) ) |
| 253 |
238 252
|
pm2.61dan |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( # ` ( W ` ( j + 1 ) ) ) <_ ( N x. if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) ) |
| 254 |
154 101 83 253
|
leadd2dd |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) + ( # ` ( W ` ( j + 1 ) ) ) ) <_ ( ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) + ( N x. if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) ) ) |
| 255 |
141 155 156 177 254
|
letrd |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( # ` U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) ) <_ ( ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) + ( N x. if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) ) ) |
| 256 |
|
fzfid |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( ( K + 1 ) ... ( j + 1 ) ) e. Fin ) |
| 257 |
62 92
|
syl |
|- ( ( ph /\ k e. ( ZZ>= ` ( K + 1 ) ) ) -> if ( k e. Prime , ( 1 / k ) , 0 ) e. RR ) |
| 258 |
105 106 257
|
syl2an |
|- ( ( ( ph /\ j e. ( ZZ>= ` K ) ) /\ k e. ( ( K + 1 ) ... ( j + 1 ) ) ) -> if ( k e. Prime , ( 1 / k ) , 0 ) e. RR ) |
| 259 |
256 258
|
fsumrecl |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> sum_ k e. ( ( K + 1 ) ... ( j + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) e. RR ) |
| 260 |
85 259
|
remulcld |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( N x. sum_ k e. ( ( K + 1 ) ... ( j + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) ) e. RR ) |
| 261 |
|
letr |
|- ( ( ( # ` U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) ) e. RR /\ ( ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) + ( N x. if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) ) e. RR /\ ( N x. sum_ k e. ( ( K + 1 ) ... ( j + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) ) e. RR ) -> ( ( ( # ` U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) ) <_ ( ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) + ( N x. if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) ) /\ ( ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) + ( N x. if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... ( j + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) -> ( # ` U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... ( j + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) ) |
| 262 |
141 156 260 261
|
syl3anc |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( ( ( # ` U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) ) <_ ( ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) + ( N x. if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) ) /\ ( ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) + ( N x. if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... ( j + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) -> ( # ` U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... ( j + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) ) |
| 263 |
255 262
|
mpand |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( ( ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) + ( N x. if ( ( j + 1 ) e. Prime , ( 1 / ( j + 1 ) ) , 0 ) ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... ( j + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) ) -> ( # ` U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... ( j + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) ) |
| 264 |
131 263
|
sylbid |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... j ) if ( k e. Prime , ( 1 / k ) , 0 ) ) -> ( # ` U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... ( j + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) ) |
| 265 |
264
|
expcom |
|- ( j e. ( ZZ>= ` K ) -> ( ph -> ( ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... j ) if ( k e. Prime , ( 1 / k ) , 0 ) ) -> ( # ` U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... ( j + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) ) ) |
| 266 |
265
|
a2d |
|- ( j e. ( ZZ>= ` K ) -> ( ( ph -> ( # ` U_ k e. ( ( K + 1 ) ... j ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... j ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) -> ( ph -> ( # ` U_ k e. ( ( K + 1 ) ... ( j + 1 ) ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... ( j + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) ) ) |
| 267 |
14 21 28 35 57 266
|
uzind4i |
|- ( N e. ( ZZ>= ` K ) -> ( ph -> ( # ` U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... N ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) ) |
| 268 |
267
|
com12 |
|- ( ph -> ( N e. ( ZZ>= ` K ) -> ( # ` U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... N ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) ) |