Step |
Hyp |
Ref |
Expression |
1 |
|
prmrec.1 |
|- F = ( n e. NN |-> if ( n e. Prime , ( 1 / n ) , 0 ) ) |
2 |
|
prmrec.2 |
|- ( ph -> K e. NN ) |
3 |
|
prmrec.3 |
|- ( ph -> N e. NN ) |
4 |
|
prmrec.4 |
|- M = { n e. ( 1 ... N ) | A. p e. ( Prime \ ( 1 ... K ) ) -. p || n } |
5 |
|
prmrec.5 |
|- ( ph -> seq 1 ( + , F ) e. dom ~~> ) |
6 |
|
prmrec.6 |
|- ( ph -> sum_ k e. ( ZZ>= ` ( K + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) < ( 1 / 2 ) ) |
7 |
|
prmrec.7 |
|- W = ( p e. NN |-> { n e. ( 1 ... N ) | ( p e. Prime /\ p || n ) } ) |
8 |
3
|
nnred |
|- ( ph -> N e. RR ) |
9 |
8
|
rehalfcld |
|- ( ph -> ( N / 2 ) e. RR ) |
10 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
11 |
4
|
ssrab3 |
|- M C_ ( 1 ... N ) |
12 |
|
ssfi |
|- ( ( ( 1 ... N ) e. Fin /\ M C_ ( 1 ... N ) ) -> M e. Fin ) |
13 |
10 11 12
|
mp2an |
|- M e. Fin |
14 |
|
hashcl |
|- ( M e. Fin -> ( # ` M ) e. NN0 ) |
15 |
13 14
|
ax-mp |
|- ( # ` M ) e. NN0 |
16 |
15
|
nn0rei |
|- ( # ` M ) e. RR |
17 |
16
|
a1i |
|- ( ph -> ( # ` M ) e. RR ) |
18 |
|
2nn |
|- 2 e. NN |
19 |
2
|
nnnn0d |
|- ( ph -> K e. NN0 ) |
20 |
|
nnexpcl |
|- ( ( 2 e. NN /\ K e. NN0 ) -> ( 2 ^ K ) e. NN ) |
21 |
18 19 20
|
sylancr |
|- ( ph -> ( 2 ^ K ) e. NN ) |
22 |
21
|
nnred |
|- ( ph -> ( 2 ^ K ) e. RR ) |
23 |
3
|
nnrpd |
|- ( ph -> N e. RR+ ) |
24 |
23
|
rpsqrtcld |
|- ( ph -> ( sqrt ` N ) e. RR+ ) |
25 |
24
|
rpred |
|- ( ph -> ( sqrt ` N ) e. RR ) |
26 |
22 25
|
remulcld |
|- ( ph -> ( ( 2 ^ K ) x. ( sqrt ` N ) ) e. RR ) |
27 |
8
|
recnd |
|- ( ph -> N e. CC ) |
28 |
27
|
2halvesd |
|- ( ph -> ( ( N / 2 ) + ( N / 2 ) ) = N ) |
29 |
11
|
a1i |
|- ( ph -> M C_ ( 1 ... N ) ) |
30 |
2
|
peano2nnd |
|- ( ph -> ( K + 1 ) e. NN ) |
31 |
|
elfzuz |
|- ( k e. ( ( K + 1 ) ... N ) -> k e. ( ZZ>= ` ( K + 1 ) ) ) |
32 |
|
eluznn |
|- ( ( ( K + 1 ) e. NN /\ k e. ( ZZ>= ` ( K + 1 ) ) ) -> k e. NN ) |
33 |
30 31 32
|
syl2an |
|- ( ( ph /\ k e. ( ( K + 1 ) ... N ) ) -> k e. NN ) |
34 |
|
eleq1w |
|- ( p = k -> ( p e. Prime <-> k e. Prime ) ) |
35 |
|
breq1 |
|- ( p = k -> ( p || n <-> k || n ) ) |
36 |
34 35
|
anbi12d |
|- ( p = k -> ( ( p e. Prime /\ p || n ) <-> ( k e. Prime /\ k || n ) ) ) |
37 |
36
|
rabbidv |
|- ( p = k -> { n e. ( 1 ... N ) | ( p e. Prime /\ p || n ) } = { n e. ( 1 ... N ) | ( k e. Prime /\ k || n ) } ) |
38 |
|
ovex |
|- ( 1 ... N ) e. _V |
39 |
38
|
rabex |
|- { n e. ( 1 ... N ) | ( k e. Prime /\ k || n ) } e. _V |
40 |
37 7 39
|
fvmpt |
|- ( k e. NN -> ( W ` k ) = { n e. ( 1 ... N ) | ( k e. Prime /\ k || n ) } ) |
41 |
40
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( W ` k ) = { n e. ( 1 ... N ) | ( k e. Prime /\ k || n ) } ) |
42 |
|
ssrab2 |
|- { n e. ( 1 ... N ) | ( k e. Prime /\ k || n ) } C_ ( 1 ... N ) |
43 |
41 42
|
eqsstrdi |
|- ( ( ph /\ k e. NN ) -> ( W ` k ) C_ ( 1 ... N ) ) |
44 |
33 43
|
syldan |
|- ( ( ph /\ k e. ( ( K + 1 ) ... N ) ) -> ( W ` k ) C_ ( 1 ... N ) ) |
45 |
44
|
ralrimiva |
|- ( ph -> A. k e. ( ( K + 1 ) ... N ) ( W ` k ) C_ ( 1 ... N ) ) |
46 |
|
iunss |
|- ( U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) C_ ( 1 ... N ) <-> A. k e. ( ( K + 1 ) ... N ) ( W ` k ) C_ ( 1 ... N ) ) |
47 |
45 46
|
sylibr |
|- ( ph -> U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) C_ ( 1 ... N ) ) |
48 |
29 47
|
unssd |
|- ( ph -> ( M u. U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) C_ ( 1 ... N ) ) |
49 |
|
breq1 |
|- ( p = q -> ( p || n <-> q || n ) ) |
50 |
49
|
notbid |
|- ( p = q -> ( -. p || n <-> -. q || n ) ) |
51 |
50
|
cbvralvw |
|- ( A. p e. ( Prime \ ( 1 ... K ) ) -. p || n <-> A. q e. ( Prime \ ( 1 ... K ) ) -. q || n ) |
52 |
|
breq2 |
|- ( n = x -> ( q || n <-> q || x ) ) |
53 |
52
|
notbid |
|- ( n = x -> ( -. q || n <-> -. q || x ) ) |
54 |
53
|
ralbidv |
|- ( n = x -> ( A. q e. ( Prime \ ( 1 ... K ) ) -. q || n <-> A. q e. ( Prime \ ( 1 ... K ) ) -. q || x ) ) |
55 |
51 54
|
syl5bb |
|- ( n = x -> ( A. p e. ( Prime \ ( 1 ... K ) ) -. p || n <-> A. q e. ( Prime \ ( 1 ... K ) ) -. q || x ) ) |
56 |
55 4
|
elrab2 |
|- ( x e. M <-> ( x e. ( 1 ... N ) /\ A. q e. ( Prime \ ( 1 ... K ) ) -. q || x ) ) |
57 |
|
elun1 |
|- ( x e. M -> x e. ( M u. U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) ) |
58 |
56 57
|
sylbir |
|- ( ( x e. ( 1 ... N ) /\ A. q e. ( Prime \ ( 1 ... K ) ) -. q || x ) -> x e. ( M u. U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) ) |
59 |
58
|
ex |
|- ( x e. ( 1 ... N ) -> ( A. q e. ( Prime \ ( 1 ... K ) ) -. q || x -> x e. ( M u. U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) ) ) |
60 |
59
|
adantl |
|- ( ( ph /\ x e. ( 1 ... N ) ) -> ( A. q e. ( Prime \ ( 1 ... K ) ) -. q || x -> x e. ( M u. U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) ) ) |
61 |
|
dfrex2 |
|- ( E. q e. ( Prime \ ( 1 ... K ) ) q || x <-> -. A. q e. ( Prime \ ( 1 ... K ) ) -. q || x ) |
62 |
2
|
nnzd |
|- ( ph -> K e. ZZ ) |
63 |
62
|
peano2zd |
|- ( ph -> ( K + 1 ) e. ZZ ) |
64 |
63
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> ( K + 1 ) e. ZZ ) |
65 |
3
|
nnzd |
|- ( ph -> N e. ZZ ) |
66 |
65
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> N e. ZZ ) |
67 |
|
eldifi |
|- ( q e. ( Prime \ ( 1 ... K ) ) -> q e. Prime ) |
68 |
67
|
ad2antrl |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> q e. Prime ) |
69 |
|
prmz |
|- ( q e. Prime -> q e. ZZ ) |
70 |
68 69
|
syl |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> q e. ZZ ) |
71 |
|
eldifn |
|- ( q e. ( Prime \ ( 1 ... K ) ) -> -. q e. ( 1 ... K ) ) |
72 |
71
|
ad2antrl |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> -. q e. ( 1 ... K ) ) |
73 |
|
prmnn |
|- ( q e. Prime -> q e. NN ) |
74 |
68 73
|
syl |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> q e. NN ) |
75 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
76 |
74 75
|
eleqtrdi |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> q e. ( ZZ>= ` 1 ) ) |
77 |
62
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> K e. ZZ ) |
78 |
|
elfz5 |
|- ( ( q e. ( ZZ>= ` 1 ) /\ K e. ZZ ) -> ( q e. ( 1 ... K ) <-> q <_ K ) ) |
79 |
76 77 78
|
syl2anc |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> ( q e. ( 1 ... K ) <-> q <_ K ) ) |
80 |
72 79
|
mtbid |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> -. q <_ K ) |
81 |
2
|
nnred |
|- ( ph -> K e. RR ) |
82 |
81
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> K e. RR ) |
83 |
74
|
nnred |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> q e. RR ) |
84 |
82 83
|
ltnled |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> ( K < q <-> -. q <_ K ) ) |
85 |
80 84
|
mpbird |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> K < q ) |
86 |
|
zltp1le |
|- ( ( K e. ZZ /\ q e. ZZ ) -> ( K < q <-> ( K + 1 ) <_ q ) ) |
87 |
77 70 86
|
syl2anc |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> ( K < q <-> ( K + 1 ) <_ q ) ) |
88 |
85 87
|
mpbid |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> ( K + 1 ) <_ q ) |
89 |
|
elfznn |
|- ( x e. ( 1 ... N ) -> x e. NN ) |
90 |
89
|
ad2antlr |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> x e. NN ) |
91 |
90
|
nnred |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> x e. RR ) |
92 |
8
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> N e. RR ) |
93 |
|
simprr |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> q || x ) |
94 |
|
dvdsle |
|- ( ( q e. ZZ /\ x e. NN ) -> ( q || x -> q <_ x ) ) |
95 |
70 90 94
|
syl2anc |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> ( q || x -> q <_ x ) ) |
96 |
93 95
|
mpd |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> q <_ x ) |
97 |
|
elfzle2 |
|- ( x e. ( 1 ... N ) -> x <_ N ) |
98 |
97
|
ad2antlr |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> x <_ N ) |
99 |
83 91 92 96 98
|
letrd |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> q <_ N ) |
100 |
64 66 70 88 99
|
elfzd |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> q e. ( ( K + 1 ) ... N ) ) |
101 |
52
|
anbi2d |
|- ( n = x -> ( ( q e. Prime /\ q || n ) <-> ( q e. Prime /\ q || x ) ) ) |
102 |
|
simplr |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> x e. ( 1 ... N ) ) |
103 |
68 93
|
jca |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> ( q e. Prime /\ q || x ) ) |
104 |
101 102 103
|
elrabd |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> x e. { n e. ( 1 ... N ) | ( q e. Prime /\ q || n ) } ) |
105 |
|
eleq1w |
|- ( p = q -> ( p e. Prime <-> q e. Prime ) ) |
106 |
105 49
|
anbi12d |
|- ( p = q -> ( ( p e. Prime /\ p || n ) <-> ( q e. Prime /\ q || n ) ) ) |
107 |
106
|
rabbidv |
|- ( p = q -> { n e. ( 1 ... N ) | ( p e. Prime /\ p || n ) } = { n e. ( 1 ... N ) | ( q e. Prime /\ q || n ) } ) |
108 |
38
|
rabex |
|- { n e. ( 1 ... N ) | ( q e. Prime /\ q || n ) } e. _V |
109 |
107 7 108
|
fvmpt |
|- ( q e. NN -> ( W ` q ) = { n e. ( 1 ... N ) | ( q e. Prime /\ q || n ) } ) |
110 |
74 109
|
syl |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> ( W ` q ) = { n e. ( 1 ... N ) | ( q e. Prime /\ q || n ) } ) |
111 |
104 110
|
eleqtrrd |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> x e. ( W ` q ) ) |
112 |
|
fveq2 |
|- ( k = q -> ( W ` k ) = ( W ` q ) ) |
113 |
112
|
eliuni |
|- ( ( q e. ( ( K + 1 ) ... N ) /\ x e. ( W ` q ) ) -> x e. U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) |
114 |
100 111 113
|
syl2anc |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> x e. U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) |
115 |
|
elun2 |
|- ( x e. U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) -> x e. ( M u. U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) ) |
116 |
114 115
|
syl |
|- ( ( ( ph /\ x e. ( 1 ... N ) ) /\ ( q e. ( Prime \ ( 1 ... K ) ) /\ q || x ) ) -> x e. ( M u. U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) ) |
117 |
116
|
rexlimdvaa |
|- ( ( ph /\ x e. ( 1 ... N ) ) -> ( E. q e. ( Prime \ ( 1 ... K ) ) q || x -> x e. ( M u. U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) ) ) |
118 |
61 117
|
syl5bir |
|- ( ( ph /\ x e. ( 1 ... N ) ) -> ( -. A. q e. ( Prime \ ( 1 ... K ) ) -. q || x -> x e. ( M u. U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) ) ) |
119 |
60 118
|
pm2.61d |
|- ( ( ph /\ x e. ( 1 ... N ) ) -> x e. ( M u. U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) ) |
120 |
48 119
|
eqelssd |
|- ( ph -> ( M u. U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) = ( 1 ... N ) ) |
121 |
120
|
fveq2d |
|- ( ph -> ( # ` ( M u. U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) ) = ( # ` ( 1 ... N ) ) ) |
122 |
3
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
123 |
|
hashfz1 |
|- ( N e. NN0 -> ( # ` ( 1 ... N ) ) = N ) |
124 |
122 123
|
syl |
|- ( ph -> ( # ` ( 1 ... N ) ) = N ) |
125 |
121 124
|
eqtr2d |
|- ( ph -> N = ( # ` ( M u. U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) ) ) |
126 |
13
|
a1i |
|- ( ph -> M e. Fin ) |
127 |
|
ssfi |
|- ( ( ( 1 ... N ) e. Fin /\ U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) C_ ( 1 ... N ) ) -> U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) e. Fin ) |
128 |
10 47 127
|
sylancr |
|- ( ph -> U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) e. Fin ) |
129 |
|
breq1 |
|- ( p = k -> ( p || x <-> k || x ) ) |
130 |
129
|
notbid |
|- ( p = k -> ( -. p || x <-> -. k || x ) ) |
131 |
|
breq2 |
|- ( n = x -> ( p || n <-> p || x ) ) |
132 |
131
|
notbid |
|- ( n = x -> ( -. p || n <-> -. p || x ) ) |
133 |
132
|
ralbidv |
|- ( n = x -> ( A. p e. ( Prime \ ( 1 ... K ) ) -. p || n <-> A. p e. ( Prime \ ( 1 ... K ) ) -. p || x ) ) |
134 |
133 4
|
elrab2 |
|- ( x e. M <-> ( x e. ( 1 ... N ) /\ A. p e. ( Prime \ ( 1 ... K ) ) -. p || x ) ) |
135 |
134
|
simprbi |
|- ( x e. M -> A. p e. ( Prime \ ( 1 ... K ) ) -. p || x ) |
136 |
135
|
ad2antlr |
|- ( ( ( ph /\ x e. M ) /\ ( k e. ( ( K + 1 ) ... N ) /\ k e. Prime ) ) -> A. p e. ( Prime \ ( 1 ... K ) ) -. p || x ) |
137 |
|
simprr |
|- ( ( ( ph /\ x e. M ) /\ ( k e. ( ( K + 1 ) ... N ) /\ k e. Prime ) ) -> k e. Prime ) |
138 |
|
noel |
|- -. k e. (/) |
139 |
|
simprl |
|- ( ( ( ph /\ x e. M ) /\ ( k e. ( ( K + 1 ) ... N ) /\ k e. Prime ) ) -> k e. ( ( K + 1 ) ... N ) ) |
140 |
139
|
biantrud |
|- ( ( ( ph /\ x e. M ) /\ ( k e. ( ( K + 1 ) ... N ) /\ k e. Prime ) ) -> ( k e. ( 1 ... K ) <-> ( k e. ( 1 ... K ) /\ k e. ( ( K + 1 ) ... N ) ) ) ) |
141 |
|
elin |
|- ( k e. ( ( 1 ... K ) i^i ( ( K + 1 ) ... N ) ) <-> ( k e. ( 1 ... K ) /\ k e. ( ( K + 1 ) ... N ) ) ) |
142 |
140 141
|
bitr4di |
|- ( ( ( ph /\ x e. M ) /\ ( k e. ( ( K + 1 ) ... N ) /\ k e. Prime ) ) -> ( k e. ( 1 ... K ) <-> k e. ( ( 1 ... K ) i^i ( ( K + 1 ) ... N ) ) ) ) |
143 |
81
|
ltp1d |
|- ( ph -> K < ( K + 1 ) ) |
144 |
|
fzdisj |
|- ( K < ( K + 1 ) -> ( ( 1 ... K ) i^i ( ( K + 1 ) ... N ) ) = (/) ) |
145 |
143 144
|
syl |
|- ( ph -> ( ( 1 ... K ) i^i ( ( K + 1 ) ... N ) ) = (/) ) |
146 |
145
|
ad2antrr |
|- ( ( ( ph /\ x e. M ) /\ ( k e. ( ( K + 1 ) ... N ) /\ k e. Prime ) ) -> ( ( 1 ... K ) i^i ( ( K + 1 ) ... N ) ) = (/) ) |
147 |
146
|
eleq2d |
|- ( ( ( ph /\ x e. M ) /\ ( k e. ( ( K + 1 ) ... N ) /\ k e. Prime ) ) -> ( k e. ( ( 1 ... K ) i^i ( ( K + 1 ) ... N ) ) <-> k e. (/) ) ) |
148 |
142 147
|
bitrd |
|- ( ( ( ph /\ x e. M ) /\ ( k e. ( ( K + 1 ) ... N ) /\ k e. Prime ) ) -> ( k e. ( 1 ... K ) <-> k e. (/) ) ) |
149 |
138 148
|
mtbiri |
|- ( ( ( ph /\ x e. M ) /\ ( k e. ( ( K + 1 ) ... N ) /\ k e. Prime ) ) -> -. k e. ( 1 ... K ) ) |
150 |
137 149
|
eldifd |
|- ( ( ( ph /\ x e. M ) /\ ( k e. ( ( K + 1 ) ... N ) /\ k e. Prime ) ) -> k e. ( Prime \ ( 1 ... K ) ) ) |
151 |
130 136 150
|
rspcdva |
|- ( ( ( ph /\ x e. M ) /\ ( k e. ( ( K + 1 ) ... N ) /\ k e. Prime ) ) -> -. k || x ) |
152 |
151
|
expr |
|- ( ( ( ph /\ x e. M ) /\ k e. ( ( K + 1 ) ... N ) ) -> ( k e. Prime -> -. k || x ) ) |
153 |
|
imnan |
|- ( ( k e. Prime -> -. k || x ) <-> -. ( k e. Prime /\ k || x ) ) |
154 |
152 153
|
sylib |
|- ( ( ( ph /\ x e. M ) /\ k e. ( ( K + 1 ) ... N ) ) -> -. ( k e. Prime /\ k || x ) ) |
155 |
33
|
adantlr |
|- ( ( ( ph /\ x e. M ) /\ k e. ( ( K + 1 ) ... N ) ) -> k e. NN ) |
156 |
155 40
|
syl |
|- ( ( ( ph /\ x e. M ) /\ k e. ( ( K + 1 ) ... N ) ) -> ( W ` k ) = { n e. ( 1 ... N ) | ( k e. Prime /\ k || n ) } ) |
157 |
156
|
eleq2d |
|- ( ( ( ph /\ x e. M ) /\ k e. ( ( K + 1 ) ... N ) ) -> ( x e. ( W ` k ) <-> x e. { n e. ( 1 ... N ) | ( k e. Prime /\ k || n ) } ) ) |
158 |
|
breq2 |
|- ( n = x -> ( k || n <-> k || x ) ) |
159 |
158
|
anbi2d |
|- ( n = x -> ( ( k e. Prime /\ k || n ) <-> ( k e. Prime /\ k || x ) ) ) |
160 |
159
|
elrab |
|- ( x e. { n e. ( 1 ... N ) | ( k e. Prime /\ k || n ) } <-> ( x e. ( 1 ... N ) /\ ( k e. Prime /\ k || x ) ) ) |
161 |
160
|
simprbi |
|- ( x e. { n e. ( 1 ... N ) | ( k e. Prime /\ k || n ) } -> ( k e. Prime /\ k || x ) ) |
162 |
157 161
|
syl6bi |
|- ( ( ( ph /\ x e. M ) /\ k e. ( ( K + 1 ) ... N ) ) -> ( x e. ( W ` k ) -> ( k e. Prime /\ k || x ) ) ) |
163 |
154 162
|
mtod |
|- ( ( ( ph /\ x e. M ) /\ k e. ( ( K + 1 ) ... N ) ) -> -. x e. ( W ` k ) ) |
164 |
163
|
nrexdv |
|- ( ( ph /\ x e. M ) -> -. E. k e. ( ( K + 1 ) ... N ) x e. ( W ` k ) ) |
165 |
|
eliun |
|- ( x e. U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) <-> E. k e. ( ( K + 1 ) ... N ) x e. ( W ` k ) ) |
166 |
164 165
|
sylnibr |
|- ( ( ph /\ x e. M ) -> -. x e. U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) |
167 |
166
|
ex |
|- ( ph -> ( x e. M -> -. x e. U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) ) |
168 |
|
imnan |
|- ( ( x e. M -> -. x e. U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) <-> -. ( x e. M /\ x e. U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) ) |
169 |
167 168
|
sylib |
|- ( ph -> -. ( x e. M /\ x e. U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) ) |
170 |
|
elin |
|- ( x e. ( M i^i U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) <-> ( x e. M /\ x e. U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) ) |
171 |
169 170
|
sylnibr |
|- ( ph -> -. x e. ( M i^i U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) ) |
172 |
171
|
eq0rdv |
|- ( ph -> ( M i^i U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) = (/) ) |
173 |
|
hashun |
|- ( ( M e. Fin /\ U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) e. Fin /\ ( M i^i U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) = (/) ) -> ( # ` ( M u. U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) ) = ( ( # ` M ) + ( # ` U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) ) ) |
174 |
126 128 172 173
|
syl3anc |
|- ( ph -> ( # ` ( M u. U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) ) = ( ( # ` M ) + ( # ` U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) ) ) |
175 |
28 125 174
|
3eqtrd |
|- ( ph -> ( ( N / 2 ) + ( N / 2 ) ) = ( ( # ` M ) + ( # ` U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) ) ) |
176 |
|
hashcl |
|- ( U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) e. Fin -> ( # ` U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) e. NN0 ) |
177 |
128 176
|
syl |
|- ( ph -> ( # ` U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) e. NN0 ) |
178 |
177
|
nn0red |
|- ( ph -> ( # ` U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) e. RR ) |
179 |
|
fzfid |
|- ( ph -> ( ( K + 1 ) ... N ) e. Fin ) |
180 |
30 32
|
sylan |
|- ( ( ph /\ k e. ( ZZ>= ` ( K + 1 ) ) ) -> k e. NN ) |
181 |
|
nnrecre |
|- ( k e. NN -> ( 1 / k ) e. RR ) |
182 |
|
0re |
|- 0 e. RR |
183 |
|
ifcl |
|- ( ( ( 1 / k ) e. RR /\ 0 e. RR ) -> if ( k e. Prime , ( 1 / k ) , 0 ) e. RR ) |
184 |
181 182 183
|
sylancl |
|- ( k e. NN -> if ( k e. Prime , ( 1 / k ) , 0 ) e. RR ) |
185 |
180 184
|
syl |
|- ( ( ph /\ k e. ( ZZ>= ` ( K + 1 ) ) ) -> if ( k e. Prime , ( 1 / k ) , 0 ) e. RR ) |
186 |
31 185
|
sylan2 |
|- ( ( ph /\ k e. ( ( K + 1 ) ... N ) ) -> if ( k e. Prime , ( 1 / k ) , 0 ) e. RR ) |
187 |
179 186
|
fsumrecl |
|- ( ph -> sum_ k e. ( ( K + 1 ) ... N ) if ( k e. Prime , ( 1 / k ) , 0 ) e. RR ) |
188 |
8 187
|
remulcld |
|- ( ph -> ( N x. sum_ k e. ( ( K + 1 ) ... N ) if ( k e. Prime , ( 1 / k ) , 0 ) ) e. RR ) |
189 |
1 2 3 4 5 6 7
|
prmreclem4 |
|- ( ph -> ( N e. ( ZZ>= ` K ) -> ( # ` U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... N ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) ) |
190 |
|
eluz |
|- ( ( N e. ZZ /\ K e. ZZ ) -> ( K e. ( ZZ>= ` N ) <-> N <_ K ) ) |
191 |
65 62 190
|
syl2anc |
|- ( ph -> ( K e. ( ZZ>= ` N ) <-> N <_ K ) ) |
192 |
|
nnleltp1 |
|- ( ( N e. NN /\ K e. NN ) -> ( N <_ K <-> N < ( K + 1 ) ) ) |
193 |
3 2 192
|
syl2anc |
|- ( ph -> ( N <_ K <-> N < ( K + 1 ) ) ) |
194 |
|
fzn |
|- ( ( ( K + 1 ) e. ZZ /\ N e. ZZ ) -> ( N < ( K + 1 ) <-> ( ( K + 1 ) ... N ) = (/) ) ) |
195 |
63 65 194
|
syl2anc |
|- ( ph -> ( N < ( K + 1 ) <-> ( ( K + 1 ) ... N ) = (/) ) ) |
196 |
191 193 195
|
3bitrd |
|- ( ph -> ( K e. ( ZZ>= ` N ) <-> ( ( K + 1 ) ... N ) = (/) ) ) |
197 |
|
0le0 |
|- 0 <_ 0 |
198 |
27
|
mul01d |
|- ( ph -> ( N x. 0 ) = 0 ) |
199 |
197 198
|
breqtrrid |
|- ( ph -> 0 <_ ( N x. 0 ) ) |
200 |
|
iuneq1 |
|- ( ( ( K + 1 ) ... N ) = (/) -> U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) = U_ k e. (/) ( W ` k ) ) |
201 |
|
0iun |
|- U_ k e. (/) ( W ` k ) = (/) |
202 |
200 201
|
eqtrdi |
|- ( ( ( K + 1 ) ... N ) = (/) -> U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) = (/) ) |
203 |
202
|
fveq2d |
|- ( ( ( K + 1 ) ... N ) = (/) -> ( # ` U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) = ( # ` (/) ) ) |
204 |
|
hash0 |
|- ( # ` (/) ) = 0 |
205 |
203 204
|
eqtrdi |
|- ( ( ( K + 1 ) ... N ) = (/) -> ( # ` U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) = 0 ) |
206 |
|
sumeq1 |
|- ( ( ( K + 1 ) ... N ) = (/) -> sum_ k e. ( ( K + 1 ) ... N ) if ( k e. Prime , ( 1 / k ) , 0 ) = sum_ k e. (/) if ( k e. Prime , ( 1 / k ) , 0 ) ) |
207 |
|
sum0 |
|- sum_ k e. (/) if ( k e. Prime , ( 1 / k ) , 0 ) = 0 |
208 |
206 207
|
eqtrdi |
|- ( ( ( K + 1 ) ... N ) = (/) -> sum_ k e. ( ( K + 1 ) ... N ) if ( k e. Prime , ( 1 / k ) , 0 ) = 0 ) |
209 |
208
|
oveq2d |
|- ( ( ( K + 1 ) ... N ) = (/) -> ( N x. sum_ k e. ( ( K + 1 ) ... N ) if ( k e. Prime , ( 1 / k ) , 0 ) ) = ( N x. 0 ) ) |
210 |
205 209
|
breq12d |
|- ( ( ( K + 1 ) ... N ) = (/) -> ( ( # ` U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... N ) if ( k e. Prime , ( 1 / k ) , 0 ) ) <-> 0 <_ ( N x. 0 ) ) ) |
211 |
199 210
|
syl5ibrcom |
|- ( ph -> ( ( ( K + 1 ) ... N ) = (/) -> ( # ` U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... N ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) ) |
212 |
196 211
|
sylbid |
|- ( ph -> ( K e. ( ZZ>= ` N ) -> ( # ` U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... N ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) ) |
213 |
|
uztric |
|- ( ( K e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` K ) \/ K e. ( ZZ>= ` N ) ) ) |
214 |
62 65 213
|
syl2anc |
|- ( ph -> ( N e. ( ZZ>= ` K ) \/ K e. ( ZZ>= ` N ) ) ) |
215 |
189 212 214
|
mpjaod |
|- ( ph -> ( # ` U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) <_ ( N x. sum_ k e. ( ( K + 1 ) ... N ) if ( k e. Prime , ( 1 / k ) , 0 ) ) ) |
216 |
|
eqid |
|- ( ZZ>= ` ( K + 1 ) ) = ( ZZ>= ` ( K + 1 ) ) |
217 |
|
eleq1w |
|- ( n = k -> ( n e. Prime <-> k e. Prime ) ) |
218 |
|
oveq2 |
|- ( n = k -> ( 1 / n ) = ( 1 / k ) ) |
219 |
217 218
|
ifbieq1d |
|- ( n = k -> if ( n e. Prime , ( 1 / n ) , 0 ) = if ( k e. Prime , ( 1 / k ) , 0 ) ) |
220 |
|
ovex |
|- ( 1 / k ) e. _V |
221 |
|
c0ex |
|- 0 e. _V |
222 |
220 221
|
ifex |
|- if ( k e. Prime , ( 1 / k ) , 0 ) e. _V |
223 |
219 1 222
|
fvmpt |
|- ( k e. NN -> ( F ` k ) = if ( k e. Prime , ( 1 / k ) , 0 ) ) |
224 |
180 223
|
syl |
|- ( ( ph /\ k e. ( ZZ>= ` ( K + 1 ) ) ) -> ( F ` k ) = if ( k e. Prime , ( 1 / k ) , 0 ) ) |
225 |
184
|
recnd |
|- ( k e. NN -> if ( k e. Prime , ( 1 / k ) , 0 ) e. CC ) |
226 |
223 225
|
eqeltrd |
|- ( k e. NN -> ( F ` k ) e. CC ) |
227 |
226
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) e. CC ) |
228 |
75 30 227
|
iserex |
|- ( ph -> ( seq 1 ( + , F ) e. dom ~~> <-> seq ( K + 1 ) ( + , F ) e. dom ~~> ) ) |
229 |
5 228
|
mpbid |
|- ( ph -> seq ( K + 1 ) ( + , F ) e. dom ~~> ) |
230 |
216 63 224 185 229
|
isumrecl |
|- ( ph -> sum_ k e. ( ZZ>= ` ( K + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) e. RR ) |
231 |
|
halfre |
|- ( 1 / 2 ) e. RR |
232 |
231
|
a1i |
|- ( ph -> ( 1 / 2 ) e. RR ) |
233 |
|
fzssuz |
|- ( ( K + 1 ) ... N ) C_ ( ZZ>= ` ( K + 1 ) ) |
234 |
233
|
a1i |
|- ( ph -> ( ( K + 1 ) ... N ) C_ ( ZZ>= ` ( K + 1 ) ) ) |
235 |
|
nnrp |
|- ( k e. NN -> k e. RR+ ) |
236 |
235
|
rpreccld |
|- ( k e. NN -> ( 1 / k ) e. RR+ ) |
237 |
236
|
rpge0d |
|- ( k e. NN -> 0 <_ ( 1 / k ) ) |
238 |
|
breq2 |
|- ( ( 1 / k ) = if ( k e. Prime , ( 1 / k ) , 0 ) -> ( 0 <_ ( 1 / k ) <-> 0 <_ if ( k e. Prime , ( 1 / k ) , 0 ) ) ) |
239 |
|
breq2 |
|- ( 0 = if ( k e. Prime , ( 1 / k ) , 0 ) -> ( 0 <_ 0 <-> 0 <_ if ( k e. Prime , ( 1 / k ) , 0 ) ) ) |
240 |
238 239
|
ifboth |
|- ( ( 0 <_ ( 1 / k ) /\ 0 <_ 0 ) -> 0 <_ if ( k e. Prime , ( 1 / k ) , 0 ) ) |
241 |
237 197 240
|
sylancl |
|- ( k e. NN -> 0 <_ if ( k e. Prime , ( 1 / k ) , 0 ) ) |
242 |
180 241
|
syl |
|- ( ( ph /\ k e. ( ZZ>= ` ( K + 1 ) ) ) -> 0 <_ if ( k e. Prime , ( 1 / k ) , 0 ) ) |
243 |
216 63 179 234 224 185 242 229
|
isumless |
|- ( ph -> sum_ k e. ( ( K + 1 ) ... N ) if ( k e. Prime , ( 1 / k ) , 0 ) <_ sum_ k e. ( ZZ>= ` ( K + 1 ) ) if ( k e. Prime , ( 1 / k ) , 0 ) ) |
244 |
187 230 232 243 6
|
lelttrd |
|- ( ph -> sum_ k e. ( ( K + 1 ) ... N ) if ( k e. Prime , ( 1 / k ) , 0 ) < ( 1 / 2 ) ) |
245 |
3
|
nngt0d |
|- ( ph -> 0 < N ) |
246 |
|
ltmul2 |
|- ( ( sum_ k e. ( ( K + 1 ) ... N ) if ( k e. Prime , ( 1 / k ) , 0 ) e. RR /\ ( 1 / 2 ) e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( sum_ k e. ( ( K + 1 ) ... N ) if ( k e. Prime , ( 1 / k ) , 0 ) < ( 1 / 2 ) <-> ( N x. sum_ k e. ( ( K + 1 ) ... N ) if ( k e. Prime , ( 1 / k ) , 0 ) ) < ( N x. ( 1 / 2 ) ) ) ) |
247 |
187 232 8 245 246
|
syl112anc |
|- ( ph -> ( sum_ k e. ( ( K + 1 ) ... N ) if ( k e. Prime , ( 1 / k ) , 0 ) < ( 1 / 2 ) <-> ( N x. sum_ k e. ( ( K + 1 ) ... N ) if ( k e. Prime , ( 1 / k ) , 0 ) ) < ( N x. ( 1 / 2 ) ) ) ) |
248 |
244 247
|
mpbid |
|- ( ph -> ( N x. sum_ k e. ( ( K + 1 ) ... N ) if ( k e. Prime , ( 1 / k ) , 0 ) ) < ( N x. ( 1 / 2 ) ) ) |
249 |
|
2cn |
|- 2 e. CC |
250 |
|
2ne0 |
|- 2 =/= 0 |
251 |
|
divrec |
|- ( ( N e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( N / 2 ) = ( N x. ( 1 / 2 ) ) ) |
252 |
249 250 251
|
mp3an23 |
|- ( N e. CC -> ( N / 2 ) = ( N x. ( 1 / 2 ) ) ) |
253 |
27 252
|
syl |
|- ( ph -> ( N / 2 ) = ( N x. ( 1 / 2 ) ) ) |
254 |
248 253
|
breqtrrd |
|- ( ph -> ( N x. sum_ k e. ( ( K + 1 ) ... N ) if ( k e. Prime , ( 1 / k ) , 0 ) ) < ( N / 2 ) ) |
255 |
178 188 9 215 254
|
lelttrd |
|- ( ph -> ( # ` U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) < ( N / 2 ) ) |
256 |
178 9 17 255
|
ltadd2dd |
|- ( ph -> ( ( # ` M ) + ( # ` U_ k e. ( ( K + 1 ) ... N ) ( W ` k ) ) ) < ( ( # ` M ) + ( N / 2 ) ) ) |
257 |
175 256
|
eqbrtrd |
|- ( ph -> ( ( N / 2 ) + ( N / 2 ) ) < ( ( # ` M ) + ( N / 2 ) ) ) |
258 |
9 17 9
|
ltadd1d |
|- ( ph -> ( ( N / 2 ) < ( # ` M ) <-> ( ( N / 2 ) + ( N / 2 ) ) < ( ( # ` M ) + ( N / 2 ) ) ) ) |
259 |
257 258
|
mpbird |
|- ( ph -> ( N / 2 ) < ( # ` M ) ) |
260 |
|
oveq1 |
|- ( k = r -> ( k ^ 2 ) = ( r ^ 2 ) ) |
261 |
260
|
breq1d |
|- ( k = r -> ( ( k ^ 2 ) || x <-> ( r ^ 2 ) || x ) ) |
262 |
261
|
cbvrabv |
|- { k e. NN | ( k ^ 2 ) || x } = { r e. NN | ( r ^ 2 ) || x } |
263 |
|
breq2 |
|- ( x = n -> ( ( r ^ 2 ) || x <-> ( r ^ 2 ) || n ) ) |
264 |
263
|
rabbidv |
|- ( x = n -> { r e. NN | ( r ^ 2 ) || x } = { r e. NN | ( r ^ 2 ) || n } ) |
265 |
262 264
|
eqtrid |
|- ( x = n -> { k e. NN | ( k ^ 2 ) || x } = { r e. NN | ( r ^ 2 ) || n } ) |
266 |
265
|
supeq1d |
|- ( x = n -> sup ( { k e. NN | ( k ^ 2 ) || x } , RR , < ) = sup ( { r e. NN | ( r ^ 2 ) || n } , RR , < ) ) |
267 |
266
|
cbvmptv |
|- ( x e. NN |-> sup ( { k e. NN | ( k ^ 2 ) || x } , RR , < ) ) = ( n e. NN |-> sup ( { r e. NN | ( r ^ 2 ) || n } , RR , < ) ) |
268 |
1 2 3 4 267
|
prmreclem3 |
|- ( ph -> ( # ` M ) <_ ( ( 2 ^ K ) x. ( sqrt ` N ) ) ) |
269 |
9 17 26 259 268
|
ltletrd |
|- ( ph -> ( N / 2 ) < ( ( 2 ^ K ) x. ( sqrt ` N ) ) ) |