Step |
Hyp |
Ref |
Expression |
1 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
2 |
|
faccl |
|- ( N e. NN0 -> ( ! ` N ) e. NN ) |
3 |
|
elnnuz |
|- ( ( ! ` N ) e. NN <-> ( ! ` N ) e. ( ZZ>= ` 1 ) ) |
4 |
|
eluzp1p1 |
|- ( ( ! ` N ) e. ( ZZ>= ` 1 ) -> ( ( ! ` N ) + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) ) |
5 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
6 |
5
|
fveq2i |
|- ( ZZ>= ` 2 ) = ( ZZ>= ` ( 1 + 1 ) ) |
7 |
4 6
|
eleqtrrdi |
|- ( ( ! ` N ) e. ( ZZ>= ` 1 ) -> ( ( ! ` N ) + 1 ) e. ( ZZ>= ` 2 ) ) |
8 |
3 7
|
sylbi |
|- ( ( ! ` N ) e. NN -> ( ( ! ` N ) + 1 ) e. ( ZZ>= ` 2 ) ) |
9 |
|
exprmfct |
|- ( ( ( ! ` N ) + 1 ) e. ( ZZ>= ` 2 ) -> E. p e. Prime p || ( ( ! ` N ) + 1 ) ) |
10 |
2 8 9
|
3syl |
|- ( N e. NN0 -> E. p e. Prime p || ( ( ! ` N ) + 1 ) ) |
11 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
12 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
13 |
|
eluz |
|- ( ( p e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` p ) <-> p <_ N ) ) |
14 |
11 12 13
|
syl2an |
|- ( ( p e. Prime /\ N e. NN0 ) -> ( N e. ( ZZ>= ` p ) <-> p <_ N ) ) |
15 |
|
prmuz2 |
|- ( p e. Prime -> p e. ( ZZ>= ` 2 ) ) |
16 |
|
eluz2b2 |
|- ( p e. ( ZZ>= ` 2 ) <-> ( p e. NN /\ 1 < p ) ) |
17 |
15 16
|
sylib |
|- ( p e. Prime -> ( p e. NN /\ 1 < p ) ) |
18 |
17
|
adantr |
|- ( ( p e. Prime /\ N e. ( ZZ>= ` p ) ) -> ( p e. NN /\ 1 < p ) ) |
19 |
18
|
simpld |
|- ( ( p e. Prime /\ N e. ( ZZ>= ` p ) ) -> p e. NN ) |
20 |
19
|
nnnn0d |
|- ( ( p e. Prime /\ N e. ( ZZ>= ` p ) ) -> p e. NN0 ) |
21 |
|
eluznn0 |
|- ( ( p e. NN0 /\ N e. ( ZZ>= ` p ) ) -> N e. NN0 ) |
22 |
20 21
|
sylancom |
|- ( ( p e. Prime /\ N e. ( ZZ>= ` p ) ) -> N e. NN0 ) |
23 |
|
nnz |
|- ( ( ! ` N ) e. NN -> ( ! ` N ) e. ZZ ) |
24 |
22 2 23
|
3syl |
|- ( ( p e. Prime /\ N e. ( ZZ>= ` p ) ) -> ( ! ` N ) e. ZZ ) |
25 |
18
|
simprd |
|- ( ( p e. Prime /\ N e. ( ZZ>= ` p ) ) -> 1 < p ) |
26 |
|
dvdsfac |
|- ( ( p e. NN /\ N e. ( ZZ>= ` p ) ) -> p || ( ! ` N ) ) |
27 |
19 26
|
sylancom |
|- ( ( p e. Prime /\ N e. ( ZZ>= ` p ) ) -> p || ( ! ` N ) ) |
28 |
|
ndvdsp1 |
|- ( ( ( ! ` N ) e. ZZ /\ p e. NN /\ 1 < p ) -> ( p || ( ! ` N ) -> -. p || ( ( ! ` N ) + 1 ) ) ) |
29 |
28
|
imp |
|- ( ( ( ( ! ` N ) e. ZZ /\ p e. NN /\ 1 < p ) /\ p || ( ! ` N ) ) -> -. p || ( ( ! ` N ) + 1 ) ) |
30 |
24 19 25 27 29
|
syl31anc |
|- ( ( p e. Prime /\ N e. ( ZZ>= ` p ) ) -> -. p || ( ( ! ` N ) + 1 ) ) |
31 |
30
|
ex |
|- ( p e. Prime -> ( N e. ( ZZ>= ` p ) -> -. p || ( ( ! ` N ) + 1 ) ) ) |
32 |
31
|
adantr |
|- ( ( p e. Prime /\ N e. NN0 ) -> ( N e. ( ZZ>= ` p ) -> -. p || ( ( ! ` N ) + 1 ) ) ) |
33 |
14 32
|
sylbird |
|- ( ( p e. Prime /\ N e. NN0 ) -> ( p <_ N -> -. p || ( ( ! ` N ) + 1 ) ) ) |
34 |
33
|
con2d |
|- ( ( p e. Prime /\ N e. NN0 ) -> ( p || ( ( ! ` N ) + 1 ) -> -. p <_ N ) ) |
35 |
34
|
ancoms |
|- ( ( N e. NN0 /\ p e. Prime ) -> ( p || ( ( ! ` N ) + 1 ) -> -. p <_ N ) ) |
36 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
37 |
11
|
zred |
|- ( p e. Prime -> p e. RR ) |
38 |
|
ltnle |
|- ( ( N e. RR /\ p e. RR ) -> ( N < p <-> -. p <_ N ) ) |
39 |
36 37 38
|
syl2an |
|- ( ( N e. NN0 /\ p e. Prime ) -> ( N < p <-> -. p <_ N ) ) |
40 |
35 39
|
sylibrd |
|- ( ( N e. NN0 /\ p e. Prime ) -> ( p || ( ( ! ` N ) + 1 ) -> N < p ) ) |
41 |
40
|
reximdva |
|- ( N e. NN0 -> ( E. p e. Prime p || ( ( ! ` N ) + 1 ) -> E. p e. Prime N < p ) ) |
42 |
10 41
|
mpd |
|- ( N e. NN0 -> E. p e. Prime N < p ) |
43 |
1 42
|
syl |
|- ( N e. NN -> E. p e. Prime N < p ) |