Step |
Hyp |
Ref |
Expression |
1 |
|
prneimg |
|- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) ) -> ( ( ( A =/= C /\ A =/= D ) \/ ( B =/= C /\ B =/= D ) ) -> { A , B } =/= { C , D } ) ) |
2 |
1
|
3adant3 |
|- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> ( ( ( A =/= C /\ A =/= D ) \/ ( B =/= C /\ B =/= D ) ) -> { A , B } =/= { C , D } ) ) |
3 |
|
ioran |
|- ( -. ( ( A =/= C /\ A =/= D ) \/ ( B =/= C /\ B =/= D ) ) <-> ( -. ( A =/= C /\ A =/= D ) /\ -. ( B =/= C /\ B =/= D ) ) ) |
4 |
|
ianor |
|- ( -. ( A =/= C /\ A =/= D ) <-> ( -. A =/= C \/ -. A =/= D ) ) |
5 |
|
nne |
|- ( -. A =/= C <-> A = C ) |
6 |
|
nne |
|- ( -. A =/= D <-> A = D ) |
7 |
5 6
|
orbi12i |
|- ( ( -. A =/= C \/ -. A =/= D ) <-> ( A = C \/ A = D ) ) |
8 |
4 7
|
bitri |
|- ( -. ( A =/= C /\ A =/= D ) <-> ( A = C \/ A = D ) ) |
9 |
|
ianor |
|- ( -. ( B =/= C /\ B =/= D ) <-> ( -. B =/= C \/ -. B =/= D ) ) |
10 |
|
nne |
|- ( -. B =/= C <-> B = C ) |
11 |
|
nne |
|- ( -. B =/= D <-> B = D ) |
12 |
10 11
|
orbi12i |
|- ( ( -. B =/= C \/ -. B =/= D ) <-> ( B = C \/ B = D ) ) |
13 |
9 12
|
bitri |
|- ( -. ( B =/= C /\ B =/= D ) <-> ( B = C \/ B = D ) ) |
14 |
8 13
|
anbi12i |
|- ( ( -. ( A =/= C /\ A =/= D ) /\ -. ( B =/= C /\ B =/= D ) ) <-> ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) ) |
15 |
3 14
|
bitri |
|- ( -. ( ( A =/= C /\ A =/= D ) \/ ( B =/= C /\ B =/= D ) ) <-> ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) ) |
16 |
|
anddi |
|- ( ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) <-> ( ( ( A = C /\ B = C ) \/ ( A = C /\ B = D ) ) \/ ( ( A = D /\ B = C ) \/ ( A = D /\ B = D ) ) ) ) |
17 |
|
eqtr3 |
|- ( ( A = C /\ B = C ) -> A = B ) |
18 |
|
eqneqall |
|- ( A = B -> ( A =/= B -> { A , B } = { C , D } ) ) |
19 |
17 18
|
syl |
|- ( ( A = C /\ B = C ) -> ( A =/= B -> { A , B } = { C , D } ) ) |
20 |
|
preq12 |
|- ( ( A = C /\ B = D ) -> { A , B } = { C , D } ) |
21 |
20
|
a1d |
|- ( ( A = C /\ B = D ) -> ( A =/= B -> { A , B } = { C , D } ) ) |
22 |
19 21
|
jaoi |
|- ( ( ( A = C /\ B = C ) \/ ( A = C /\ B = D ) ) -> ( A =/= B -> { A , B } = { C , D } ) ) |
23 |
|
preq12 |
|- ( ( A = D /\ B = C ) -> { A , B } = { D , C } ) |
24 |
|
prcom |
|- { D , C } = { C , D } |
25 |
23 24
|
eqtrdi |
|- ( ( A = D /\ B = C ) -> { A , B } = { C , D } ) |
26 |
25
|
a1d |
|- ( ( A = D /\ B = C ) -> ( A =/= B -> { A , B } = { C , D } ) ) |
27 |
|
eqtr3 |
|- ( ( A = D /\ B = D ) -> A = B ) |
28 |
27 18
|
syl |
|- ( ( A = D /\ B = D ) -> ( A =/= B -> { A , B } = { C , D } ) ) |
29 |
26 28
|
jaoi |
|- ( ( ( A = D /\ B = C ) \/ ( A = D /\ B = D ) ) -> ( A =/= B -> { A , B } = { C , D } ) ) |
30 |
22 29
|
jaoi |
|- ( ( ( ( A = C /\ B = C ) \/ ( A = C /\ B = D ) ) \/ ( ( A = D /\ B = C ) \/ ( A = D /\ B = D ) ) ) -> ( A =/= B -> { A , B } = { C , D } ) ) |
31 |
30
|
com12 |
|- ( A =/= B -> ( ( ( ( A = C /\ B = C ) \/ ( A = C /\ B = D ) ) \/ ( ( A = D /\ B = C ) \/ ( A = D /\ B = D ) ) ) -> { A , B } = { C , D } ) ) |
32 |
31
|
3ad2ant3 |
|- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> ( ( ( ( A = C /\ B = C ) \/ ( A = C /\ B = D ) ) \/ ( ( A = D /\ B = C ) \/ ( A = D /\ B = D ) ) ) -> { A , B } = { C , D } ) ) |
33 |
16 32
|
syl5bi |
|- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> ( ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) -> { A , B } = { C , D } ) ) |
34 |
15 33
|
syl5bi |
|- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> ( -. ( ( A =/= C /\ A =/= D ) \/ ( B =/= C /\ B =/= D ) ) -> { A , B } = { C , D } ) ) |
35 |
34
|
necon1ad |
|- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> ( { A , B } =/= { C , D } -> ( ( A =/= C /\ A =/= D ) \/ ( B =/= C /\ B =/= D ) ) ) ) |
36 |
2 35
|
impbid |
|- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> ( ( ( A =/= C /\ A =/= D ) \/ ( B =/= C /\ B =/= D ) ) <-> { A , B } =/= { C , D } ) ) |