Step |
Hyp |
Ref |
Expression |
1 |
|
preq12bg |
|- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) ) -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
2 |
|
orddi |
|- ( ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) <-> ( ( ( A = C \/ A = D ) /\ ( A = C \/ B = C ) ) /\ ( ( B = D \/ A = D ) /\ ( B = D \/ B = C ) ) ) ) |
3 |
|
simpll |
|- ( ( ( ( A = C \/ A = D ) /\ ( A = C \/ B = C ) ) /\ ( ( B = D \/ A = D ) /\ ( B = D \/ B = C ) ) ) -> ( A = C \/ A = D ) ) |
4 |
|
pm1.4 |
|- ( ( B = D \/ B = C ) -> ( B = C \/ B = D ) ) |
5 |
4
|
ad2antll |
|- ( ( ( ( A = C \/ A = D ) /\ ( A = C \/ B = C ) ) /\ ( ( B = D \/ A = D ) /\ ( B = D \/ B = C ) ) ) -> ( B = C \/ B = D ) ) |
6 |
3 5
|
jca |
|- ( ( ( ( A = C \/ A = D ) /\ ( A = C \/ B = C ) ) /\ ( ( B = D \/ A = D ) /\ ( B = D \/ B = C ) ) ) -> ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) ) |
7 |
2 6
|
sylbi |
|- ( ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) -> ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) ) |
8 |
1 7
|
syl6bi |
|- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) ) -> ( { A , B } = { C , D } -> ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) ) ) |
9 |
|
ianor |
|- ( -. ( A =/= C /\ A =/= D ) <-> ( -. A =/= C \/ -. A =/= D ) ) |
10 |
|
nne |
|- ( -. A =/= C <-> A = C ) |
11 |
|
nne |
|- ( -. A =/= D <-> A = D ) |
12 |
10 11
|
orbi12i |
|- ( ( -. A =/= C \/ -. A =/= D ) <-> ( A = C \/ A = D ) ) |
13 |
9 12
|
bitr2i |
|- ( ( A = C \/ A = D ) <-> -. ( A =/= C /\ A =/= D ) ) |
14 |
|
ianor |
|- ( -. ( B =/= C /\ B =/= D ) <-> ( -. B =/= C \/ -. B =/= D ) ) |
15 |
|
nne |
|- ( -. B =/= C <-> B = C ) |
16 |
|
nne |
|- ( -. B =/= D <-> B = D ) |
17 |
15 16
|
orbi12i |
|- ( ( -. B =/= C \/ -. B =/= D ) <-> ( B = C \/ B = D ) ) |
18 |
14 17
|
bitr2i |
|- ( ( B = C \/ B = D ) <-> -. ( B =/= C /\ B =/= D ) ) |
19 |
13 18
|
anbi12i |
|- ( ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) <-> ( -. ( A =/= C /\ A =/= D ) /\ -. ( B =/= C /\ B =/= D ) ) ) |
20 |
8 19
|
syl6ib |
|- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) ) -> ( { A , B } = { C , D } -> ( -. ( A =/= C /\ A =/= D ) /\ -. ( B =/= C /\ B =/= D ) ) ) ) |
21 |
|
pm4.56 |
|- ( ( -. ( A =/= C /\ A =/= D ) /\ -. ( B =/= C /\ B =/= D ) ) <-> -. ( ( A =/= C /\ A =/= D ) \/ ( B =/= C /\ B =/= D ) ) ) |
22 |
20 21
|
syl6ib |
|- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) ) -> ( { A , B } = { C , D } -> -. ( ( A =/= C /\ A =/= D ) \/ ( B =/= C /\ B =/= D ) ) ) ) |
23 |
22
|
necon2ad |
|- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) ) -> ( ( ( A =/= C /\ A =/= D ) \/ ( B =/= C /\ B =/= D ) ) -> { A , B } =/= { C , D } ) ) |