| Step | Hyp | Ref | Expression | 
						
							| 1 |  | preq12bg |  |-  ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) ) -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) | 
						
							| 2 | 1 | necon3abid |  |-  ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) ) -> ( { A , B } =/= { C , D } <-> -. ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) | 
						
							| 3 |  | ioran |  |-  ( -. ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) <-> ( -. ( A = C /\ B = D ) /\ -. ( A = D /\ B = C ) ) ) | 
						
							| 4 |  | ianor |  |-  ( -. ( A = C /\ B = D ) <-> ( -. A = C \/ -. B = D ) ) | 
						
							| 5 |  | df-ne |  |-  ( A =/= C <-> -. A = C ) | 
						
							| 6 |  | df-ne |  |-  ( B =/= D <-> -. B = D ) | 
						
							| 7 | 5 6 | orbi12i |  |-  ( ( A =/= C \/ B =/= D ) <-> ( -. A = C \/ -. B = D ) ) | 
						
							| 8 | 4 7 | bitr4i |  |-  ( -. ( A = C /\ B = D ) <-> ( A =/= C \/ B =/= D ) ) | 
						
							| 9 |  | ianor |  |-  ( -. ( A = D /\ B = C ) <-> ( -. A = D \/ -. B = C ) ) | 
						
							| 10 |  | df-ne |  |-  ( A =/= D <-> -. A = D ) | 
						
							| 11 |  | df-ne |  |-  ( B =/= C <-> -. B = C ) | 
						
							| 12 | 10 11 | orbi12i |  |-  ( ( A =/= D \/ B =/= C ) <-> ( -. A = D \/ -. B = C ) ) | 
						
							| 13 | 9 12 | bitr4i |  |-  ( -. ( A = D /\ B = C ) <-> ( A =/= D \/ B =/= C ) ) | 
						
							| 14 | 8 13 | anbi12i |  |-  ( ( -. ( A = C /\ B = D ) /\ -. ( A = D /\ B = C ) ) <-> ( ( A =/= C \/ B =/= D ) /\ ( A =/= D \/ B =/= C ) ) ) | 
						
							| 15 | 3 14 | bitri |  |-  ( -. ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) <-> ( ( A =/= C \/ B =/= D ) /\ ( A =/= D \/ B =/= C ) ) ) | 
						
							| 16 | 2 15 | bitrdi |  |-  ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) ) -> ( { A , B } =/= { C , D } <-> ( ( A =/= C \/ B =/= D ) /\ ( A =/= D \/ B =/= C ) ) ) ) |