Metamath Proof Explorer


Theorem prneli

Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, using e/ . (Contributed by David A. Wheeler, 10-May-2015)

Ref Expression
Hypotheses prneli.1
|- A =/= B
prneli.2
|- A =/= C
Assertion prneli
|- A e/ { B , C }

Proof

Step Hyp Ref Expression
1 prneli.1
 |-  A =/= B
2 prneli.2
 |-  A =/= C
3 1 2 nelpri
 |-  -. A e. { B , C }
4 3 nelir
 |-  A e/ { B , C }