Step |
Hyp |
Ref |
Expression |
1 |
|
1z |
|- 1 e. ZZ |
2 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
3 |
|
id |
|- ( 1 e. ZZ -> 1 e. ZZ ) |
4 |
|
ax-1ne0 |
|- 1 =/= 0 |
5 |
4
|
a1i |
|- ( 1 e. ZZ -> 1 =/= 0 ) |
6 |
2
|
prodfclim1 |
|- ( 1 e. ZZ -> seq 1 ( x. , ( NN X. { 1 } ) ) ~~> 1 ) |
7 |
|
0ss |
|- (/) C_ NN |
8 |
7
|
a1i |
|- ( 1 e. ZZ -> (/) C_ NN ) |
9 |
|
fvconst2g |
|- ( ( 1 e. ZZ /\ k e. NN ) -> ( ( NN X. { 1 } ) ` k ) = 1 ) |
10 |
|
noel |
|- -. k e. (/) |
11 |
10
|
iffalsei |
|- if ( k e. (/) , A , 1 ) = 1 |
12 |
9 11
|
eqtr4di |
|- ( ( 1 e. ZZ /\ k e. NN ) -> ( ( NN X. { 1 } ) ` k ) = if ( k e. (/) , A , 1 ) ) |
13 |
10
|
pm2.21i |
|- ( k e. (/) -> A e. CC ) |
14 |
13
|
adantl |
|- ( ( 1 e. ZZ /\ k e. (/) ) -> A e. CC ) |
15 |
2 3 5 6 8 12 14
|
zprodn0 |
|- ( 1 e. ZZ -> prod_ k e. (/) A = 1 ) |
16 |
1 15
|
ax-mp |
|- prod_ k e. (/) A = 1 |