| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( ZZ>= ` M ) = ( ZZ>= ` M ) | 
						
							| 2 |  | simpr |  |-  ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> M e. ZZ ) | 
						
							| 3 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 4 | 3 | a1i |  |-  ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> 1 =/= 0 ) | 
						
							| 5 | 1 | prodfclim1 |  |-  ( M e. ZZ -> seq M ( x. , ( ( ZZ>= ` M ) X. { 1 } ) ) ~~> 1 ) | 
						
							| 6 | 5 | adantl |  |-  ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> seq M ( x. , ( ( ZZ>= ` M ) X. { 1 } ) ) ~~> 1 ) | 
						
							| 7 |  | simpl |  |-  ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> A C_ ( ZZ>= ` M ) ) | 
						
							| 8 |  | 1ex |  |-  1 e. _V | 
						
							| 9 | 8 | fvconst2 |  |-  ( k e. ( ZZ>= ` M ) -> ( ( ( ZZ>= ` M ) X. { 1 } ) ` k ) = 1 ) | 
						
							| 10 |  | ifid |  |-  if ( k e. A , 1 , 1 ) = 1 | 
						
							| 11 | 9 10 | eqtr4di |  |-  ( k e. ( ZZ>= ` M ) -> ( ( ( ZZ>= ` M ) X. { 1 } ) ` k ) = if ( k e. A , 1 , 1 ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) /\ k e. ( ZZ>= ` M ) ) -> ( ( ( ZZ>= ` M ) X. { 1 } ) ` k ) = if ( k e. A , 1 , 1 ) ) | 
						
							| 13 |  | 1cnd |  |-  ( ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) /\ k e. A ) -> 1 e. CC ) | 
						
							| 14 | 1 2 4 6 7 12 13 | zprodn0 |  |-  ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> prod_ k e. A 1 = 1 ) | 
						
							| 15 |  | uzf |  |-  ZZ>= : ZZ --> ~P ZZ | 
						
							| 16 | 15 | fdmi |  |-  dom ZZ>= = ZZ | 
						
							| 17 | 16 | eleq2i |  |-  ( M e. dom ZZ>= <-> M e. ZZ ) | 
						
							| 18 |  | ndmfv |  |-  ( -. M e. dom ZZ>= -> ( ZZ>= ` M ) = (/) ) | 
						
							| 19 | 17 18 | sylnbir |  |-  ( -. M e. ZZ -> ( ZZ>= ` M ) = (/) ) | 
						
							| 20 | 19 | sseq2d |  |-  ( -. M e. ZZ -> ( A C_ ( ZZ>= ` M ) <-> A C_ (/) ) ) | 
						
							| 21 | 20 | biimpac |  |-  ( ( A C_ ( ZZ>= ` M ) /\ -. M e. ZZ ) -> A C_ (/) ) | 
						
							| 22 |  | ss0 |  |-  ( A C_ (/) -> A = (/) ) | 
						
							| 23 |  | prodeq1 |  |-  ( A = (/) -> prod_ k e. A 1 = prod_ k e. (/) 1 ) | 
						
							| 24 |  | prod0 |  |-  prod_ k e. (/) 1 = 1 | 
						
							| 25 | 23 24 | eqtrdi |  |-  ( A = (/) -> prod_ k e. A 1 = 1 ) | 
						
							| 26 | 21 22 25 | 3syl |  |-  ( ( A C_ ( ZZ>= ` M ) /\ -. M e. ZZ ) -> prod_ k e. A 1 = 1 ) | 
						
							| 27 | 14 26 | pm2.61dan |  |-  ( A C_ ( ZZ>= ` M ) -> prod_ k e. A 1 = 1 ) | 
						
							| 28 |  | fz1f1o |  |-  ( A e. Fin -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) | 
						
							| 29 |  | eqidd |  |-  ( k = ( f ` j ) -> 1 = 1 ) | 
						
							| 30 |  | simpl |  |-  ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( # ` A ) e. NN ) | 
						
							| 31 |  | simpr |  |-  ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) | 
						
							| 32 |  | 1cnd |  |-  ( ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ k e. A ) -> 1 e. CC ) | 
						
							| 33 |  | elfznn |  |-  ( j e. ( 1 ... ( # ` A ) ) -> j e. NN ) | 
						
							| 34 | 8 | fvconst2 |  |-  ( j e. NN -> ( ( NN X. { 1 } ) ` j ) = 1 ) | 
						
							| 35 | 33 34 | syl |  |-  ( j e. ( 1 ... ( # ` A ) ) -> ( ( NN X. { 1 } ) ` j ) = 1 ) | 
						
							| 36 | 35 | adantl |  |-  ( ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ j e. ( 1 ... ( # ` A ) ) ) -> ( ( NN X. { 1 } ) ` j ) = 1 ) | 
						
							| 37 | 29 30 31 32 36 | fprod |  |-  ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> prod_ k e. A 1 = ( seq 1 ( x. , ( NN X. { 1 } ) ) ` ( # ` A ) ) ) | 
						
							| 38 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 39 | 38 | prodf1 |  |-  ( ( # ` A ) e. NN -> ( seq 1 ( x. , ( NN X. { 1 } ) ) ` ( # ` A ) ) = 1 ) | 
						
							| 40 | 39 | adantr |  |-  ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( seq 1 ( x. , ( NN X. { 1 } ) ) ` ( # ` A ) ) = 1 ) | 
						
							| 41 | 37 40 | eqtrd |  |-  ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> prod_ k e. A 1 = 1 ) | 
						
							| 42 | 41 | ex |  |-  ( ( # ` A ) e. NN -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> prod_ k e. A 1 = 1 ) ) | 
						
							| 43 | 42 | exlimdv |  |-  ( ( # ` A ) e. NN -> ( E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> prod_ k e. A 1 = 1 ) ) | 
						
							| 44 | 43 | imp |  |-  ( ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> prod_ k e. A 1 = 1 ) | 
						
							| 45 | 25 44 | jaoi |  |-  ( ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> prod_ k e. A 1 = 1 ) | 
						
							| 46 | 28 45 | syl |  |-  ( A e. Fin -> prod_ k e. A 1 = 1 ) | 
						
							| 47 | 27 46 | jaoi |  |-  ( ( A C_ ( ZZ>= ` M ) \/ A e. Fin ) -> prod_ k e. A 1 = 1 ) |