Description: The second class argument to a product can be chosen so that it is always a set. (Contributed by Scott Fenton, 4-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | prod2id | |- prod_ k e. A B = prod_ k e. A ( _I ` B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodeq2ii | |- ( A. k e. A ( _I ` B ) = ( _I ` ( _I ` B ) ) -> prod_ k e. A B = prod_ k e. A ( _I ` B ) ) |
|
2 | fvex | |- ( _I ` B ) e. _V |
|
3 | fvi | |- ( ( _I ` B ) e. _V -> ( _I ` ( _I ` B ) ) = ( _I ` B ) ) |
|
4 | 2 3 | ax-mp | |- ( _I ` ( _I ` B ) ) = ( _I ` B ) |
5 | 4 | eqcomi | |- ( _I ` B ) = ( _I ` ( _I ` B ) ) |
6 | 5 | a1i | |- ( k e. A -> ( _I ` B ) = ( _I ` ( _I ` B ) ) ) |
7 | 1 6 | mprg | |- prod_ k e. A B = prod_ k e. A ( _I ` B ) |