Description: Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodeq12i.1 | |- A = B |
|
| prodeq12i.2 | |- ( k e. A -> C = D ) |
||
| Assertion | prodeq12i | |- prod_ k e. A C = prod_ k e. B D |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodeq12i.1 | |- A = B |
|
| 2 | prodeq12i.2 | |- ( k e. A -> C = D ) |
|
| 3 | 2 | prodeq2i | |- prod_ k e. A C = prod_ k e. A D |
| 4 | 1 | prodeq1i | |- prod_ k e. A D = prod_ k e. B D |
| 5 | 3 4 | eqtri | |- prod_ k e. A C = prod_ k e. B D |