Metamath Proof Explorer


Theorem prodeq1i

Description: Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypothesis prodeq1i.1
|- A = B
Assertion prodeq1i
|- prod_ k e. A C = prod_ k e. B C

Proof

Step Hyp Ref Expression
1 prodeq1i.1
 |-  A = B
2 prodeq1
 |-  ( A = B -> prod_ k e. A C = prod_ k e. B C )
3 1 2 ax-mp
 |-  prod_ k e. A C = prod_ k e. B C