Metamath Proof Explorer


Theorem prodeq1iOLD

Description: Obsolete version of prodeq1i as of 1-Sep-2025. (Contributed by Scott Fenton, 4-Dec-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis prodeq1iOLD.1
|- A = B
Assertion prodeq1iOLD
|- prod_ k e. A C = prod_ k e. B C

Proof

Step Hyp Ref Expression
1 prodeq1iOLD.1
 |-  A = B
2 prodeq1
 |-  ( A = B -> prod_ k e. A C = prod_ k e. B C )
3 1 2 ax-mp
 |-  prod_ k e. A C = prod_ k e. B C