Metamath Proof Explorer


Theorem prodeq2ad

Description: Equality deduction for product. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypothesis prodeq2ad.1
|- ( ph -> B = C )
Assertion prodeq2ad
|- ( ph -> prod_ k e. A B = prod_ k e. A C )

Proof

Step Hyp Ref Expression
1 prodeq2ad.1
 |-  ( ph -> B = C )
2 1 ralrimivw
 |-  ( ph -> A. k e. A B = C )
3 2 prodeq2d
 |-  ( ph -> prod_ k e. A B = prod_ k e. A C )