Metamath Proof Explorer


Theorem prodeq2d

Description: Equality deduction for product. Note that unlike prodeq2dv , k may occur in ph . (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypothesis prodeq2d.1
|- ( ph -> A. k e. A B = C )
Assertion prodeq2d
|- ( ph -> prod_ k e. A B = prod_ k e. A C )

Proof

Step Hyp Ref Expression
1 prodeq2d.1
 |-  ( ph -> A. k e. A B = C )
2 prodeq2
 |-  ( A. k e. A B = C -> prod_ k e. A B = prod_ k e. A C )
3 1 2 syl
 |-  ( ph -> prod_ k e. A B = prod_ k e. A C )