Description: Equality deduction for product. Note that unlike prodeq2dv , k may occur in ph . (Contributed by Scott Fenton, 4-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | prodeq2d.1 | |- ( ph -> A. k e. A B = C ) |
|
Assertion | prodeq2d | |- ( ph -> prod_ k e. A B = prod_ k e. A C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodeq2d.1 | |- ( ph -> A. k e. A B = C ) |
|
2 | prodeq2 | |- ( A. k e. A B = C -> prod_ k e. A B = prod_ k e. A C ) |
|
3 | 1 2 | syl | |- ( ph -> prod_ k e. A B = prod_ k e. A C ) |