Description: Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prodeq2i.1 | |- ( k e. A -> B = C ) |
|
| Assertion | prodeq2i | |- prod_ k e. A B = prod_ k e. A C |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodeq2i.1 | |- ( k e. A -> B = C ) |
|
| 2 | prodeq2 | |- ( A. k e. A B = C -> prod_ k e. A B = prod_ k e. A C ) |
|
| 3 | 2 1 | mprg | |- prod_ k e. A B = prod_ k e. A C |