Metamath Proof Explorer


Theorem prodeq2i

Description: Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypothesis prodeq2i.1
|- ( k e. A -> B = C )
Assertion prodeq2i
|- prod_ k e. A B = prod_ k e. A C

Proof

Step Hyp Ref Expression
1 prodeq2i.1
 |-  ( k e. A -> B = C )
2 prodeq2
 |-  ( A. k e. A B = C -> prod_ k e. A B = prod_ k e. A C )
3 2 1 mprg
 |-  prod_ k e. A B = prod_ k e. A C