| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ZZ = ZZ | 
						
							| 2 |  | ifeq1 |  |-  ( B = C -> if ( k e. A , B , 1 ) = if ( k e. A , C , 1 ) ) | 
						
							| 3 | 2 | alimi |  |-  ( A. k B = C -> A. k if ( k e. A , B , 1 ) = if ( k e. A , C , 1 ) ) | 
						
							| 4 |  | alral |  |-  ( A. k if ( k e. A , B , 1 ) = if ( k e. A , C , 1 ) -> A. k e. ZZ if ( k e. A , B , 1 ) = if ( k e. A , C , 1 ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( A. k B = C -> A. k e. ZZ if ( k e. A , B , 1 ) = if ( k e. A , C , 1 ) ) | 
						
							| 6 |  | mpteq12 |  |-  ( ( ZZ = ZZ /\ A. k e. ZZ if ( k e. A , B , 1 ) = if ( k e. A , C , 1 ) ) -> ( k e. ZZ |-> if ( k e. A , B , 1 ) ) = ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) | 
						
							| 7 | 1 5 6 | sylancr |  |-  ( A. k B = C -> ( k e. ZZ |-> if ( k e. A , B , 1 ) ) = ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) | 
						
							| 8 | 7 | seqeq3d |  |-  ( A. k B = C -> seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) = seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ) | 
						
							| 9 | 8 | breq1d |  |-  ( A. k B = C -> ( seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y <-> seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) ) | 
						
							| 10 | 9 | anbi2d |  |-  ( A. k B = C -> ( ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) <-> ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) ) ) | 
						
							| 11 | 10 | exbidv |  |-  ( A. k B = C -> ( E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) <-> E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) ) ) | 
						
							| 12 | 11 | rexbidv |  |-  ( A. k B = C -> ( E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) <-> E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) ) ) | 
						
							| 13 | 7 | seqeq3d |  |-  ( A. k B = C -> seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) = seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ) | 
						
							| 14 | 13 | breq1d |  |-  ( A. k B = C -> ( seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x <-> seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) ) | 
						
							| 15 | 12 14 | 3anbi23d |  |-  ( A. k B = C -> ( ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x ) <-> ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) ) ) | 
						
							| 16 | 15 | rexbidv |  |-  ( A. k B = C -> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x ) <-> E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) ) ) | 
						
							| 17 |  | csbeq2 |  |-  ( A. k B = C -> [_ ( f ` n ) / k ]_ B = [_ ( f ` n ) / k ]_ C ) | 
						
							| 18 | 17 | mpteq2dv |  |-  ( A. k B = C -> ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) = ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) | 
						
							| 19 | 18 | seqeq3d |  |-  ( A. k B = C -> seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) = seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ) | 
						
							| 20 | 19 | fveq1d |  |-  ( A. k B = C -> ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) | 
						
							| 21 | 20 | eqeq2d |  |-  ( A. k B = C -> ( x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) <-> x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) | 
						
							| 22 | 21 | anbi2d |  |-  ( A. k B = C -> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) <-> ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) | 
						
							| 23 | 22 | exbidv |  |-  ( A. k B = C -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) <-> E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) | 
						
							| 24 | 23 | rexbidv |  |-  ( A. k B = C -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) <-> E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) | 
						
							| 25 | 16 24 | orbi12d |  |-  ( A. k B = C -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) <-> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) ) | 
						
							| 26 | 25 | iotabidv |  |-  ( A. k B = C -> ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) ) | 
						
							| 27 |  | df-prod |  |-  prod_ k e. A B = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) | 
						
							| 28 |  | df-prod |  |-  prod_ k e. A C = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) | 
						
							| 29 | 26 27 28 | 3eqtr4g |  |-  ( A. k B = C -> prod_ k e. A B = prod_ k e. A C ) |