Description: An infinite product of complex terms is a function from an upper set of integers to CC . (Contributed by Scott Fenton, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodf.1 | |- Z = ( ZZ>= ` M ) | |
| prodf.2 | |- ( ph -> M e. ZZ ) | ||
| prodf.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) | ||
| Assertion | prodf | |- ( ph -> seq M ( x. , F ) : Z --> CC ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | prodf.1 | |- Z = ( ZZ>= ` M ) | |
| 2 | prodf.2 | |- ( ph -> M e. ZZ ) | |
| 3 | prodf.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) | |
| 4 | mulcl | |- ( ( k e. CC /\ x e. CC ) -> ( k x. x ) e. CC ) | |
| 5 | 4 | adantl | |- ( ( ph /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC ) | 
| 6 | 1 2 3 5 | seqf | |- ( ph -> seq M ( x. , F ) : Z --> CC ) |