| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prodf1.1 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | 1t1e1 |  |-  ( 1 x. 1 ) = 1 | 
						
							| 3 | 2 | a1i |  |-  ( N e. Z -> ( 1 x. 1 ) = 1 ) | 
						
							| 4 | 1 | eleq2i |  |-  ( N e. Z <-> N e. ( ZZ>= ` M ) ) | 
						
							| 5 | 4 | biimpi |  |-  ( N e. Z -> N e. ( ZZ>= ` M ) ) | 
						
							| 6 |  | ax-1cn |  |-  1 e. CC | 
						
							| 7 |  | elfzuz |  |-  ( k e. ( M ... N ) -> k e. ( ZZ>= ` M ) ) | 
						
							| 8 | 7 1 | eleqtrrdi |  |-  ( k e. ( M ... N ) -> k e. Z ) | 
						
							| 9 | 8 | adantl |  |-  ( ( N e. Z /\ k e. ( M ... N ) ) -> k e. Z ) | 
						
							| 10 |  | fvconst2g |  |-  ( ( 1 e. CC /\ k e. Z ) -> ( ( Z X. { 1 } ) ` k ) = 1 ) | 
						
							| 11 | 6 9 10 | sylancr |  |-  ( ( N e. Z /\ k e. ( M ... N ) ) -> ( ( Z X. { 1 } ) ` k ) = 1 ) | 
						
							| 12 | 3 5 11 | seqid3 |  |-  ( N e. Z -> ( seq M ( x. , ( Z X. { 1 } ) ) ` N ) = 1 ) |