Metamath Proof Explorer


Theorem prodfclim1

Description: The constant one product converges to one. (Contributed by Scott Fenton, 5-Dec-2017)

Ref Expression
Hypothesis prodf1.1
|- Z = ( ZZ>= ` M )
Assertion prodfclim1
|- ( M e. ZZ -> seq M ( x. , ( Z X. { 1 } ) ) ~~> 1 )

Proof

Step Hyp Ref Expression
1 prodf1.1
 |-  Z = ( ZZ>= ` M )
2 1 prodf1f
 |-  ( M e. ZZ -> seq M ( x. , ( Z X. { 1 } ) ) = ( Z X. { 1 } ) )
3 ax-1cn
 |-  1 e. CC
4 1 eqimss2i
 |-  ( ZZ>= ` M ) C_ Z
5 1 fvexi
 |-  Z e. _V
6 4 5 climconst2
 |-  ( ( 1 e. CC /\ M e. ZZ ) -> ( Z X. { 1 } ) ~~> 1 )
7 3 6 mpan
 |-  ( M e. ZZ -> ( Z X. { 1 } ) ~~> 1 )
8 2 7 eqbrtrd
 |-  ( M e. ZZ -> seq M ( x. , ( Z X. { 1 } ) ) ~~> 1 )