Description: The constant one product converges to one. (Contributed by Scott Fenton, 5-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prodf1.1 | |- Z = ( ZZ>= ` M )  | 
					|
| Assertion | prodfclim1 | |- ( M e. ZZ -> seq M ( x. , ( Z X. { 1 } ) ) ~~> 1 ) | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | prodf1.1 | |- Z = ( ZZ>= ` M )  | 
						|
| 2 | 1 | prodf1f |  |-  ( M e. ZZ -> seq M ( x. , ( Z X. { 1 } ) ) = ( Z X. { 1 } ) ) | 
						
| 3 | ax-1cn | |- 1 e. CC  | 
						|
| 4 | 1 | eqimss2i | |- ( ZZ>= ` M ) C_ Z  | 
						
| 5 | 1 | fvexi | |- Z e. _V  | 
						
| 6 | 4 5 | climconst2 |  |-  ( ( 1 e. CC /\ M e. ZZ ) -> ( Z X. { 1 } ) ~~> 1 ) | 
						
| 7 | 3 6 | mpan |  |-  ( M e. ZZ -> ( Z X. { 1 } ) ~~> 1 ) | 
						
| 8 | 2 7 | eqbrtrd |  |-  ( M e. ZZ -> seq M ( x. , ( Z X. { 1 } ) ) ~~> 1 ) |