Description: The constant one product converges to one. (Contributed by Scott Fenton, 5-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | prodf1.1 | |- Z = ( ZZ>= ` M ) |
|
Assertion | prodfclim1 | |- ( M e. ZZ -> seq M ( x. , ( Z X. { 1 } ) ) ~~> 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodf1.1 | |- Z = ( ZZ>= ` M ) |
|
2 | 1 | prodf1f | |- ( M e. ZZ -> seq M ( x. , ( Z X. { 1 } ) ) = ( Z X. { 1 } ) ) |
3 | ax-1cn | |- 1 e. CC |
|
4 | 1 | eqimss2i | |- ( ZZ>= ` M ) C_ Z |
5 | 1 | fvexi | |- Z e. _V |
6 | 4 5 | climconst2 | |- ( ( 1 e. CC /\ M e. ZZ ) -> ( Z X. { 1 } ) ~~> 1 ) |
7 | 3 6 | mpan | |- ( M e. ZZ -> ( Z X. { 1 } ) ~~> 1 ) |
8 | 2 7 | eqbrtrd | |- ( M e. ZZ -> seq M ( x. , ( Z X. { 1 } ) ) ~~> 1 ) |