| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prodfdiv.1 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 2 |
|
prodfdiv.2 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. CC ) |
| 3 |
|
prodfdiv.3 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) e. CC ) |
| 4 |
|
prodfdiv.4 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) =/= 0 ) |
| 5 |
|
prodfdiv.5 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( H ` k ) = ( ( F ` k ) / ( G ` k ) ) ) |
| 6 |
|
fveq2 |
|- ( n = k -> ( G ` n ) = ( G ` k ) ) |
| 7 |
6
|
oveq2d |
|- ( n = k -> ( 1 / ( G ` n ) ) = ( 1 / ( G ` k ) ) ) |
| 8 |
|
eqid |
|- ( n e. ( M ... N ) |-> ( 1 / ( G ` n ) ) ) = ( n e. ( M ... N ) |-> ( 1 / ( G ` n ) ) ) |
| 9 |
|
ovex |
|- ( 1 / ( G ` k ) ) e. _V |
| 10 |
7 8 9
|
fvmpt |
|- ( k e. ( M ... N ) -> ( ( n e. ( M ... N ) |-> ( 1 / ( G ` n ) ) ) ` k ) = ( 1 / ( G ` k ) ) ) |
| 11 |
10
|
adantl |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( ( n e. ( M ... N ) |-> ( 1 / ( G ` n ) ) ) ` k ) = ( 1 / ( G ` k ) ) ) |
| 12 |
1 3 4 11
|
prodfrec |
|- ( ph -> ( seq M ( x. , ( n e. ( M ... N ) |-> ( 1 / ( G ` n ) ) ) ) ` N ) = ( 1 / ( seq M ( x. , G ) ` N ) ) ) |
| 13 |
12
|
oveq2d |
|- ( ph -> ( ( seq M ( x. , F ) ` N ) x. ( seq M ( x. , ( n e. ( M ... N ) |-> ( 1 / ( G ` n ) ) ) ) ` N ) ) = ( ( seq M ( x. , F ) ` N ) x. ( 1 / ( seq M ( x. , G ) ` N ) ) ) ) |
| 14 |
|
eleq1w |
|- ( k = n -> ( k e. ( M ... N ) <-> n e. ( M ... N ) ) ) |
| 15 |
14
|
anbi2d |
|- ( k = n -> ( ( ph /\ k e. ( M ... N ) ) <-> ( ph /\ n e. ( M ... N ) ) ) ) |
| 16 |
|
fveq2 |
|- ( k = n -> ( G ` k ) = ( G ` n ) ) |
| 17 |
16
|
eleq1d |
|- ( k = n -> ( ( G ` k ) e. CC <-> ( G ` n ) e. CC ) ) |
| 18 |
15 17
|
imbi12d |
|- ( k = n -> ( ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) e. CC ) <-> ( ( ph /\ n e. ( M ... N ) ) -> ( G ` n ) e. CC ) ) ) |
| 19 |
18 3
|
chvarvv |
|- ( ( ph /\ n e. ( M ... N ) ) -> ( G ` n ) e. CC ) |
| 20 |
16
|
neeq1d |
|- ( k = n -> ( ( G ` k ) =/= 0 <-> ( G ` n ) =/= 0 ) ) |
| 21 |
15 20
|
imbi12d |
|- ( k = n -> ( ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) =/= 0 ) <-> ( ( ph /\ n e. ( M ... N ) ) -> ( G ` n ) =/= 0 ) ) ) |
| 22 |
21 4
|
chvarvv |
|- ( ( ph /\ n e. ( M ... N ) ) -> ( G ` n ) =/= 0 ) |
| 23 |
19 22
|
reccld |
|- ( ( ph /\ n e. ( M ... N ) ) -> ( 1 / ( G ` n ) ) e. CC ) |
| 24 |
23
|
fmpttd |
|- ( ph -> ( n e. ( M ... N ) |-> ( 1 / ( G ` n ) ) ) : ( M ... N ) --> CC ) |
| 25 |
24
|
ffvelcdmda |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( ( n e. ( M ... N ) |-> ( 1 / ( G ` n ) ) ) ` k ) e. CC ) |
| 26 |
2 3 4
|
divrecd |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( ( F ` k ) / ( G ` k ) ) = ( ( F ` k ) x. ( 1 / ( G ` k ) ) ) ) |
| 27 |
11
|
oveq2d |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( ( F ` k ) x. ( ( n e. ( M ... N ) |-> ( 1 / ( G ` n ) ) ) ` k ) ) = ( ( F ` k ) x. ( 1 / ( G ` k ) ) ) ) |
| 28 |
26 5 27
|
3eqtr4d |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( H ` k ) = ( ( F ` k ) x. ( ( n e. ( M ... N ) |-> ( 1 / ( G ` n ) ) ) ` k ) ) ) |
| 29 |
1 2 25 28
|
prodfmul |
|- ( ph -> ( seq M ( x. , H ) ` N ) = ( ( seq M ( x. , F ) ` N ) x. ( seq M ( x. , ( n e. ( M ... N ) |-> ( 1 / ( G ` n ) ) ) ) ` N ) ) ) |
| 30 |
|
mulcl |
|- ( ( k e. CC /\ x e. CC ) -> ( k x. x ) e. CC ) |
| 31 |
30
|
adantl |
|- ( ( ph /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC ) |
| 32 |
1 2 31
|
seqcl |
|- ( ph -> ( seq M ( x. , F ) ` N ) e. CC ) |
| 33 |
1 3 31
|
seqcl |
|- ( ph -> ( seq M ( x. , G ) ` N ) e. CC ) |
| 34 |
1 3 4
|
prodfn0 |
|- ( ph -> ( seq M ( x. , G ) ` N ) =/= 0 ) |
| 35 |
32 33 34
|
divrecd |
|- ( ph -> ( ( seq M ( x. , F ) ` N ) / ( seq M ( x. , G ) ` N ) ) = ( ( seq M ( x. , F ) ` N ) x. ( 1 / ( seq M ( x. , G ) ` N ) ) ) ) |
| 36 |
13 29 35
|
3eqtr4d |
|- ( ph -> ( seq M ( x. , H ) ` N ) = ( ( seq M ( x. , F ) ` N ) / ( seq M ( x. , G ) ` N ) ) ) |