| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prodfmul.1 |  |-  ( ph -> N e. ( ZZ>= ` M ) ) | 
						
							| 2 |  | prodfmul.2 |  |-  ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. CC ) | 
						
							| 3 |  | prodfmul.3 |  |-  ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) e. CC ) | 
						
							| 4 |  | prodfmul.4 |  |-  ( ( ph /\ k e. ( M ... N ) ) -> ( H ` k ) = ( ( F ` k ) x. ( G ` k ) ) ) | 
						
							| 5 |  | mulcl |  |-  ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) e. CC ) | 
						
							| 7 |  | mulcom |  |-  ( ( x e. CC /\ y e. CC ) -> ( x x. y ) = ( y x. x ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) = ( y x. x ) ) | 
						
							| 9 |  | mulass |  |-  ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ph /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) | 
						
							| 11 | 6 8 10 1 2 3 4 | seqcaopr |  |-  ( ph -> ( seq M ( x. , H ) ` N ) = ( ( seq M ( x. , F ) ` N ) x. ( seq M ( x. , G ) ` N ) ) ) |