| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prodfn0.1 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 2 |
|
prodfn0.2 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. CC ) |
| 3 |
|
prodfn0.3 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) =/= 0 ) |
| 4 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
| 5 |
1 4
|
syl |
|- ( ph -> N e. ( M ... N ) ) |
| 6 |
|
fveq2 |
|- ( m = M -> ( seq M ( x. , F ) ` m ) = ( seq M ( x. , F ) ` M ) ) |
| 7 |
6
|
neeq1d |
|- ( m = M -> ( ( seq M ( x. , F ) ` m ) =/= 0 <-> ( seq M ( x. , F ) ` M ) =/= 0 ) ) |
| 8 |
7
|
imbi2d |
|- ( m = M -> ( ( ph -> ( seq M ( x. , F ) ` m ) =/= 0 ) <-> ( ph -> ( seq M ( x. , F ) ` M ) =/= 0 ) ) ) |
| 9 |
|
fveq2 |
|- ( m = n -> ( seq M ( x. , F ) ` m ) = ( seq M ( x. , F ) ` n ) ) |
| 10 |
9
|
neeq1d |
|- ( m = n -> ( ( seq M ( x. , F ) ` m ) =/= 0 <-> ( seq M ( x. , F ) ` n ) =/= 0 ) ) |
| 11 |
10
|
imbi2d |
|- ( m = n -> ( ( ph -> ( seq M ( x. , F ) ` m ) =/= 0 ) <-> ( ph -> ( seq M ( x. , F ) ` n ) =/= 0 ) ) ) |
| 12 |
|
fveq2 |
|- ( m = ( n + 1 ) -> ( seq M ( x. , F ) ` m ) = ( seq M ( x. , F ) ` ( n + 1 ) ) ) |
| 13 |
12
|
neeq1d |
|- ( m = ( n + 1 ) -> ( ( seq M ( x. , F ) ` m ) =/= 0 <-> ( seq M ( x. , F ) ` ( n + 1 ) ) =/= 0 ) ) |
| 14 |
13
|
imbi2d |
|- ( m = ( n + 1 ) -> ( ( ph -> ( seq M ( x. , F ) ` m ) =/= 0 ) <-> ( ph -> ( seq M ( x. , F ) ` ( n + 1 ) ) =/= 0 ) ) ) |
| 15 |
|
fveq2 |
|- ( m = N -> ( seq M ( x. , F ) ` m ) = ( seq M ( x. , F ) ` N ) ) |
| 16 |
15
|
neeq1d |
|- ( m = N -> ( ( seq M ( x. , F ) ` m ) =/= 0 <-> ( seq M ( x. , F ) ` N ) =/= 0 ) ) |
| 17 |
16
|
imbi2d |
|- ( m = N -> ( ( ph -> ( seq M ( x. , F ) ` m ) =/= 0 ) <-> ( ph -> ( seq M ( x. , F ) ` N ) =/= 0 ) ) ) |
| 18 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
| 19 |
|
elfzelz |
|- ( M e. ( M ... N ) -> M e. ZZ ) |
| 20 |
19
|
adantl |
|- ( ( ph /\ M e. ( M ... N ) ) -> M e. ZZ ) |
| 21 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( x. , F ) ` M ) = ( F ` M ) ) |
| 22 |
20 21
|
syl |
|- ( ( ph /\ M e. ( M ... N ) ) -> ( seq M ( x. , F ) ` M ) = ( F ` M ) ) |
| 23 |
|
fveq2 |
|- ( k = M -> ( F ` k ) = ( F ` M ) ) |
| 24 |
23
|
neeq1d |
|- ( k = M -> ( ( F ` k ) =/= 0 <-> ( F ` M ) =/= 0 ) ) |
| 25 |
24
|
imbi2d |
|- ( k = M -> ( ( ph -> ( F ` k ) =/= 0 ) <-> ( ph -> ( F ` M ) =/= 0 ) ) ) |
| 26 |
3
|
expcom |
|- ( k e. ( M ... N ) -> ( ph -> ( F ` k ) =/= 0 ) ) |
| 27 |
25 26
|
vtoclga |
|- ( M e. ( M ... N ) -> ( ph -> ( F ` M ) =/= 0 ) ) |
| 28 |
27
|
impcom |
|- ( ( ph /\ M e. ( M ... N ) ) -> ( F ` M ) =/= 0 ) |
| 29 |
22 28
|
eqnetrd |
|- ( ( ph /\ M e. ( M ... N ) ) -> ( seq M ( x. , F ) ` M ) =/= 0 ) |
| 30 |
29
|
expcom |
|- ( M e. ( M ... N ) -> ( ph -> ( seq M ( x. , F ) ` M ) =/= 0 ) ) |
| 31 |
18 30
|
syl |
|- ( N e. ( ZZ>= ` M ) -> ( ph -> ( seq M ( x. , F ) ` M ) =/= 0 ) ) |
| 32 |
|
elfzouz |
|- ( n e. ( M ..^ N ) -> n e. ( ZZ>= ` M ) ) |
| 33 |
32
|
3ad2ant2 |
|- ( ( ph /\ n e. ( M ..^ N ) /\ ( seq M ( x. , F ) ` n ) =/= 0 ) -> n e. ( ZZ>= ` M ) ) |
| 34 |
|
seqp1 |
|- ( n e. ( ZZ>= ` M ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) |
| 35 |
33 34
|
syl |
|- ( ( ph /\ n e. ( M ..^ N ) /\ ( seq M ( x. , F ) ` n ) =/= 0 ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) |
| 36 |
|
elfzofz |
|- ( n e. ( M ..^ N ) -> n e. ( M ... N ) ) |
| 37 |
|
elfzuz |
|- ( n e. ( M ... N ) -> n e. ( ZZ>= ` M ) ) |
| 38 |
37
|
adantl |
|- ( ( ph /\ n e. ( M ... N ) ) -> n e. ( ZZ>= ` M ) ) |
| 39 |
|
elfzuz3 |
|- ( n e. ( M ... N ) -> N e. ( ZZ>= ` n ) ) |
| 40 |
|
fzss2 |
|- ( N e. ( ZZ>= ` n ) -> ( M ... n ) C_ ( M ... N ) ) |
| 41 |
39 40
|
syl |
|- ( n e. ( M ... N ) -> ( M ... n ) C_ ( M ... N ) ) |
| 42 |
41
|
sselda |
|- ( ( n e. ( M ... N ) /\ k e. ( M ... n ) ) -> k e. ( M ... N ) ) |
| 43 |
42 2
|
sylan2 |
|- ( ( ph /\ ( n e. ( M ... N ) /\ k e. ( M ... n ) ) ) -> ( F ` k ) e. CC ) |
| 44 |
43
|
anassrs |
|- ( ( ( ph /\ n e. ( M ... N ) ) /\ k e. ( M ... n ) ) -> ( F ` k ) e. CC ) |
| 45 |
|
mulcl |
|- ( ( k e. CC /\ x e. CC ) -> ( k x. x ) e. CC ) |
| 46 |
45
|
adantl |
|- ( ( ( ph /\ n e. ( M ... N ) ) /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC ) |
| 47 |
38 44 46
|
seqcl |
|- ( ( ph /\ n e. ( M ... N ) ) -> ( seq M ( x. , F ) ` n ) e. CC ) |
| 48 |
36 47
|
sylan2 |
|- ( ( ph /\ n e. ( M ..^ N ) ) -> ( seq M ( x. , F ) ` n ) e. CC ) |
| 49 |
48
|
3adant3 |
|- ( ( ph /\ n e. ( M ..^ N ) /\ ( seq M ( x. , F ) ` n ) =/= 0 ) -> ( seq M ( x. , F ) ` n ) e. CC ) |
| 50 |
|
fzofzp1 |
|- ( n e. ( M ..^ N ) -> ( n + 1 ) e. ( M ... N ) ) |
| 51 |
|
fveq2 |
|- ( k = ( n + 1 ) -> ( F ` k ) = ( F ` ( n + 1 ) ) ) |
| 52 |
51
|
eleq1d |
|- ( k = ( n + 1 ) -> ( ( F ` k ) e. CC <-> ( F ` ( n + 1 ) ) e. CC ) ) |
| 53 |
52
|
imbi2d |
|- ( k = ( n + 1 ) -> ( ( ph -> ( F ` k ) e. CC ) <-> ( ph -> ( F ` ( n + 1 ) ) e. CC ) ) ) |
| 54 |
2
|
expcom |
|- ( k e. ( M ... N ) -> ( ph -> ( F ` k ) e. CC ) ) |
| 55 |
53 54
|
vtoclga |
|- ( ( n + 1 ) e. ( M ... N ) -> ( ph -> ( F ` ( n + 1 ) ) e. CC ) ) |
| 56 |
50 55
|
syl |
|- ( n e. ( M ..^ N ) -> ( ph -> ( F ` ( n + 1 ) ) e. CC ) ) |
| 57 |
56
|
impcom |
|- ( ( ph /\ n e. ( M ..^ N ) ) -> ( F ` ( n + 1 ) ) e. CC ) |
| 58 |
57
|
3adant3 |
|- ( ( ph /\ n e. ( M ..^ N ) /\ ( seq M ( x. , F ) ` n ) =/= 0 ) -> ( F ` ( n + 1 ) ) e. CC ) |
| 59 |
|
simp3 |
|- ( ( ph /\ n e. ( M ..^ N ) /\ ( seq M ( x. , F ) ` n ) =/= 0 ) -> ( seq M ( x. , F ) ` n ) =/= 0 ) |
| 60 |
51
|
neeq1d |
|- ( k = ( n + 1 ) -> ( ( F ` k ) =/= 0 <-> ( F ` ( n + 1 ) ) =/= 0 ) ) |
| 61 |
60
|
imbi2d |
|- ( k = ( n + 1 ) -> ( ( ph -> ( F ` k ) =/= 0 ) <-> ( ph -> ( F ` ( n + 1 ) ) =/= 0 ) ) ) |
| 62 |
61 26
|
vtoclga |
|- ( ( n + 1 ) e. ( M ... N ) -> ( ph -> ( F ` ( n + 1 ) ) =/= 0 ) ) |
| 63 |
62
|
impcom |
|- ( ( ph /\ ( n + 1 ) e. ( M ... N ) ) -> ( F ` ( n + 1 ) ) =/= 0 ) |
| 64 |
50 63
|
sylan2 |
|- ( ( ph /\ n e. ( M ..^ N ) ) -> ( F ` ( n + 1 ) ) =/= 0 ) |
| 65 |
64
|
3adant3 |
|- ( ( ph /\ n e. ( M ..^ N ) /\ ( seq M ( x. , F ) ` n ) =/= 0 ) -> ( F ` ( n + 1 ) ) =/= 0 ) |
| 66 |
49 58 59 65
|
mulne0d |
|- ( ( ph /\ n e. ( M ..^ N ) /\ ( seq M ( x. , F ) ` n ) =/= 0 ) -> ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) =/= 0 ) |
| 67 |
35 66
|
eqnetrd |
|- ( ( ph /\ n e. ( M ..^ N ) /\ ( seq M ( x. , F ) ` n ) =/= 0 ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) =/= 0 ) |
| 68 |
67
|
3exp |
|- ( ph -> ( n e. ( M ..^ N ) -> ( ( seq M ( x. , F ) ` n ) =/= 0 -> ( seq M ( x. , F ) ` ( n + 1 ) ) =/= 0 ) ) ) |
| 69 |
68
|
com12 |
|- ( n e. ( M ..^ N ) -> ( ph -> ( ( seq M ( x. , F ) ` n ) =/= 0 -> ( seq M ( x. , F ) ` ( n + 1 ) ) =/= 0 ) ) ) |
| 70 |
69
|
a2d |
|- ( n e. ( M ..^ N ) -> ( ( ph -> ( seq M ( x. , F ) ` n ) =/= 0 ) -> ( ph -> ( seq M ( x. , F ) ` ( n + 1 ) ) =/= 0 ) ) ) |
| 71 |
8 11 14 17 31 70
|
fzind2 |
|- ( N e. ( M ... N ) -> ( ph -> ( seq M ( x. , F ) ` N ) =/= 0 ) ) |
| 72 |
5 71
|
mpcom |
|- ( ph -> ( seq M ( x. , F ) ` N ) =/= 0 ) |