Description: Infer that a multiplier is nonnegative from a positive multiplicand and nonnegative product. (Contributed by NM, 2-Jul-2005) (Revised by AV, 9-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodge0ld.1 | |- ( ph -> A e. RR ) |
|
| prodge0ld.2 | |- ( ph -> B e. RR+ ) |
||
| prodge0ld.3 | |- ( ph -> 0 <_ ( A x. B ) ) |
||
| Assertion | prodge0ld | |- ( ph -> 0 <_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodge0ld.1 | |- ( ph -> A e. RR ) |
|
| 2 | prodge0ld.2 | |- ( ph -> B e. RR+ ) |
|
| 3 | prodge0ld.3 | |- ( ph -> 0 <_ ( A x. B ) ) |
|
| 4 | 2 | rpcnd | |- ( ph -> B e. CC ) |
| 5 | 1 | recnd | |- ( ph -> A e. CC ) |
| 6 | 4 5 | mulcomd | |- ( ph -> ( B x. A ) = ( A x. B ) ) |
| 7 | 3 6 | breqtrrd | |- ( ph -> 0 <_ ( B x. A ) ) |
| 8 | 2 1 7 | prodge0rd | |- ( ph -> 0 <_ A ) |