Metamath Proof Explorer


Theorem prodgt0i

Description: Infer that a multiplicand is positive from a nonnegative multiplier and positive product. (Contributed by NM, 15-May-1999)

Ref Expression
Hypotheses ltplus1.1
|- A e. RR
prodgt0.2
|- B e. RR
Assertion prodgt0i
|- ( ( 0 <_ A /\ 0 < ( A x. B ) ) -> 0 < B )

Proof

Step Hyp Ref Expression
1 ltplus1.1
 |-  A e. RR
2 prodgt0.2
 |-  B e. RR
3 prodgt0
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ 0 < ( A x. B ) ) ) -> 0 < B )
4 1 2 3 mpanl12
 |-  ( ( 0 <_ A /\ 0 < ( A x. B ) ) -> 0 < B )