Description: Infer that a multiplicand is positive from a nonnegative multiplier and positive product. (Contributed by NM, 15-May-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ltplus1.1 | |- A e. RR |
|
prodgt0.2 | |- B e. RR |
||
Assertion | prodgt0i | |- ( ( 0 <_ A /\ 0 < ( A x. B ) ) -> 0 < B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltplus1.1 | |- A e. RR |
|
2 | prodgt0.2 | |- B e. RR |
|
3 | prodgt0 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ 0 < ( A x. B ) ) ) -> 0 < B ) |
|
4 | 1 2 3 | mpanl12 | |- ( ( 0 <_ A /\ 0 < ( A x. B ) ) -> 0 < B ) |