Description: Infer that a multiplicand is positive from a nonnegative multiplier and positive product. (Contributed by NM, 15-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltplus1.1 | |- A e. RR | |
| prodgt0.2 | |- B e. RR | ||
| Assertion | prodgt0i | |- ( ( 0 <_ A /\ 0 < ( A x. B ) ) -> 0 < B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ltplus1.1 | |- A e. RR | |
| 2 | prodgt0.2 | |- B e. RR | |
| 3 | prodgt0 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ 0 < ( A x. B ) ) ) -> 0 < B ) | |
| 4 | 1 2 3 | mpanl12 | |- ( ( 0 <_ A /\ 0 < ( A x. B ) ) -> 0 < B ) |