| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prodmo.1 |
|- F = ( k e. ZZ |-> if ( k e. A , B , 1 ) ) |
| 2 |
|
prodmo.2 |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
| 3 |
|
prodmo.3 |
|- G = ( j e. NN |-> [_ ( f ` j ) / k ]_ B ) |
| 4 |
|
3simpb |
|- ( ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) -> ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) ) |
| 5 |
4
|
reximi |
|- ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) -> E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) ) |
| 6 |
|
3simpb |
|- ( ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) -> ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> z ) ) |
| 7 |
6
|
reximi |
|- ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) -> E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> z ) ) |
| 8 |
|
fveq2 |
|- ( m = w -> ( ZZ>= ` m ) = ( ZZ>= ` w ) ) |
| 9 |
8
|
sseq2d |
|- ( m = w -> ( A C_ ( ZZ>= ` m ) <-> A C_ ( ZZ>= ` w ) ) ) |
| 10 |
|
seqeq1 |
|- ( m = w -> seq m ( x. , F ) = seq w ( x. , F ) ) |
| 11 |
10
|
breq1d |
|- ( m = w -> ( seq m ( x. , F ) ~~> z <-> seq w ( x. , F ) ~~> z ) ) |
| 12 |
9 11
|
anbi12d |
|- ( m = w -> ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> z ) <-> ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) |
| 13 |
12
|
cbvrexvw |
|- ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> z ) <-> E. w e. ZZ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) |
| 14 |
13
|
anbi2i |
|- ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> z ) ) <-> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ E. w e. ZZ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) |
| 15 |
|
reeanv |
|- ( E. m e. ZZ E. w e. ZZ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) <-> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ E. w e. ZZ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) |
| 16 |
14 15
|
bitr4i |
|- ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> z ) ) <-> E. m e. ZZ E. w e. ZZ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) |
| 17 |
|
simprlr |
|- ( ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) -> seq m ( x. , F ) ~~> x ) |
| 18 |
17
|
adantl |
|- ( ( ph /\ ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) ) -> seq m ( x. , F ) ~~> x ) |
| 19 |
2
|
adantlr |
|- ( ( ( ph /\ ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) ) /\ k e. A ) -> B e. CC ) |
| 20 |
|
simprll |
|- ( ( ph /\ ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) ) -> m e. ZZ ) |
| 21 |
|
simprlr |
|- ( ( ph /\ ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) ) -> w e. ZZ ) |
| 22 |
|
simprll |
|- ( ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) -> A C_ ( ZZ>= ` m ) ) |
| 23 |
22
|
adantl |
|- ( ( ph /\ ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) ) -> A C_ ( ZZ>= ` m ) ) |
| 24 |
|
simprrl |
|- ( ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) -> A C_ ( ZZ>= ` w ) ) |
| 25 |
24
|
adantl |
|- ( ( ph /\ ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) ) -> A C_ ( ZZ>= ` w ) ) |
| 26 |
1 19 20 21 23 25
|
prodrb |
|- ( ( ph /\ ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) ) -> ( seq m ( x. , F ) ~~> x <-> seq w ( x. , F ) ~~> x ) ) |
| 27 |
18 26
|
mpbid |
|- ( ( ph /\ ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) ) -> seq w ( x. , F ) ~~> x ) |
| 28 |
|
simprrr |
|- ( ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) -> seq w ( x. , F ) ~~> z ) |
| 29 |
28
|
adantl |
|- ( ( ph /\ ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) ) -> seq w ( x. , F ) ~~> z ) |
| 30 |
|
climuni |
|- ( ( seq w ( x. , F ) ~~> x /\ seq w ( x. , F ) ~~> z ) -> x = z ) |
| 31 |
27 29 30
|
syl2anc |
|- ( ( ph /\ ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) ) -> x = z ) |
| 32 |
31
|
expcom |
|- ( ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) -> ( ph -> x = z ) ) |
| 33 |
32
|
ex |
|- ( ( m e. ZZ /\ w e. ZZ ) -> ( ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) -> ( ph -> x = z ) ) ) |
| 34 |
33
|
rexlimivv |
|- ( E. m e. ZZ E. w e. ZZ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) -> ( ph -> x = z ) ) |
| 35 |
16 34
|
sylbi |
|- ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> z ) ) -> ( ph -> x = z ) ) |
| 36 |
5 7 35
|
syl2an |
|- ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) ) -> ( ph -> x = z ) ) |
| 37 |
1 2 3
|
prodmolem2 |
|- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) -> z = x ) ) |
| 38 |
|
equcomi |
|- ( z = x -> x = z ) |
| 39 |
37 38
|
syl6 |
|- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) -> x = z ) ) |
| 40 |
39
|
expimpd |
|- ( ph -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) ) -> x = z ) ) |
| 41 |
40
|
com12 |
|- ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) ) -> ( ph -> x = z ) ) |
| 42 |
41
|
ancoms |
|- ( ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) ) -> ( ph -> x = z ) ) |
| 43 |
1 2 3
|
prodmolem2 |
|- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) -> x = z ) ) |
| 44 |
43
|
expimpd |
|- ( ph -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) -> x = z ) ) |
| 45 |
44
|
com12 |
|- ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) -> ( ph -> x = z ) ) |
| 46 |
|
reeanv |
|- ( E. m e. NN E. w e. NN ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ E. g ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) <-> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ E. w e. NN E. g ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) ) |
| 47 |
|
exdistrv |
|- ( E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) <-> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ E. g ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) ) |
| 48 |
47
|
2rexbii |
|- ( E. m e. NN E. w e. NN E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) <-> E. m e. NN E. w e. NN ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ E. g ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) ) |
| 49 |
|
oveq2 |
|- ( m = w -> ( 1 ... m ) = ( 1 ... w ) ) |
| 50 |
49
|
f1oeq2d |
|- ( m = w -> ( f : ( 1 ... m ) -1-1-onto-> A <-> f : ( 1 ... w ) -1-1-onto-> A ) ) |
| 51 |
|
fveq2 |
|- ( m = w -> ( seq 1 ( x. , G ) ` m ) = ( seq 1 ( x. , G ) ` w ) ) |
| 52 |
51
|
eqeq2d |
|- ( m = w -> ( z = ( seq 1 ( x. , G ) ` m ) <-> z = ( seq 1 ( x. , G ) ` w ) ) ) |
| 53 |
50 52
|
anbi12d |
|- ( m = w -> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) <-> ( f : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` w ) ) ) ) |
| 54 |
53
|
exbidv |
|- ( m = w -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) <-> E. f ( f : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` w ) ) ) ) |
| 55 |
|
f1oeq1 |
|- ( f = g -> ( f : ( 1 ... w ) -1-1-onto-> A <-> g : ( 1 ... w ) -1-1-onto-> A ) ) |
| 56 |
|
fveq1 |
|- ( f = g -> ( f ` j ) = ( g ` j ) ) |
| 57 |
56
|
csbeq1d |
|- ( f = g -> [_ ( f ` j ) / k ]_ B = [_ ( g ` j ) / k ]_ B ) |
| 58 |
57
|
mpteq2dv |
|- ( f = g -> ( j e. NN |-> [_ ( f ` j ) / k ]_ B ) = ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) |
| 59 |
3 58
|
eqtrid |
|- ( f = g -> G = ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) |
| 60 |
59
|
seqeq3d |
|- ( f = g -> seq 1 ( x. , G ) = seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ) |
| 61 |
60
|
fveq1d |
|- ( f = g -> ( seq 1 ( x. , G ) ` w ) = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) |
| 62 |
61
|
eqeq2d |
|- ( f = g -> ( z = ( seq 1 ( x. , G ) ` w ) <-> z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) |
| 63 |
55 62
|
anbi12d |
|- ( f = g -> ( ( f : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` w ) ) <-> ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) ) |
| 64 |
63
|
cbvexvw |
|- ( E. f ( f : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` w ) ) <-> E. g ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) |
| 65 |
54 64
|
bitrdi |
|- ( m = w -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) <-> E. g ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) ) |
| 66 |
65
|
cbvrexvw |
|- ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) <-> E. w e. NN E. g ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) |
| 67 |
66
|
anbi2i |
|- ( ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) <-> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ E. w e. NN E. g ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) ) |
| 68 |
46 48 67
|
3bitr4i |
|- ( E. m e. NN E. w e. NN E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) <-> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) ) |
| 69 |
|
an4 |
|- ( ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) <-> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... w ) -1-1-onto-> A ) /\ ( x = ( seq 1 ( x. , G ) ` m ) /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) ) |
| 70 |
2
|
ad4ant14 |
|- ( ( ( ( ph /\ ( m e. NN /\ w e. NN ) ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... w ) -1-1-onto-> A ) ) /\ k e. A ) -> B e. CC ) |
| 71 |
|
fveq2 |
|- ( j = a -> ( f ` j ) = ( f ` a ) ) |
| 72 |
71
|
csbeq1d |
|- ( j = a -> [_ ( f ` j ) / k ]_ B = [_ ( f ` a ) / k ]_ B ) |
| 73 |
72
|
cbvmptv |
|- ( j e. NN |-> [_ ( f ` j ) / k ]_ B ) = ( a e. NN |-> [_ ( f ` a ) / k ]_ B ) |
| 74 |
3 73
|
eqtri |
|- G = ( a e. NN |-> [_ ( f ` a ) / k ]_ B ) |
| 75 |
|
fveq2 |
|- ( j = a -> ( g ` j ) = ( g ` a ) ) |
| 76 |
75
|
csbeq1d |
|- ( j = a -> [_ ( g ` j ) / k ]_ B = [_ ( g ` a ) / k ]_ B ) |
| 77 |
76
|
cbvmptv |
|- ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) = ( a e. NN |-> [_ ( g ` a ) / k ]_ B ) |
| 78 |
|
simplr |
|- ( ( ( ph /\ ( m e. NN /\ w e. NN ) ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... w ) -1-1-onto-> A ) ) -> ( m e. NN /\ w e. NN ) ) |
| 79 |
|
simprl |
|- ( ( ( ph /\ ( m e. NN /\ w e. NN ) ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... w ) -1-1-onto-> A ) ) -> f : ( 1 ... m ) -1-1-onto-> A ) |
| 80 |
|
simprr |
|- ( ( ( ph /\ ( m e. NN /\ w e. NN ) ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... w ) -1-1-onto-> A ) ) -> g : ( 1 ... w ) -1-1-onto-> A ) |
| 81 |
1 70 74 77 78 79 80
|
prodmolem3 |
|- ( ( ( ph /\ ( m e. NN /\ w e. NN ) ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... w ) -1-1-onto-> A ) ) -> ( seq 1 ( x. , G ) ` m ) = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) |
| 82 |
|
eqeq12 |
|- ( ( x = ( seq 1 ( x. , G ) ` m ) /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) -> ( x = z <-> ( seq 1 ( x. , G ) ` m ) = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) |
| 83 |
81 82
|
syl5ibrcom |
|- ( ( ( ph /\ ( m e. NN /\ w e. NN ) ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... w ) -1-1-onto-> A ) ) -> ( ( x = ( seq 1 ( x. , G ) ` m ) /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) -> x = z ) ) |
| 84 |
83
|
expimpd |
|- ( ( ph /\ ( m e. NN /\ w e. NN ) ) -> ( ( ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... w ) -1-1-onto-> A ) /\ ( x = ( seq 1 ( x. , G ) ` m ) /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) -> x = z ) ) |
| 85 |
69 84
|
biimtrid |
|- ( ( ph /\ ( m e. NN /\ w e. NN ) ) -> ( ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) -> x = z ) ) |
| 86 |
85
|
exlimdvv |
|- ( ( ph /\ ( m e. NN /\ w e. NN ) ) -> ( E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) -> x = z ) ) |
| 87 |
86
|
rexlimdvva |
|- ( ph -> ( E. m e. NN E. w e. NN E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) -> x = z ) ) |
| 88 |
68 87
|
biimtrrid |
|- ( ph -> ( ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) -> x = z ) ) |
| 89 |
88
|
com12 |
|- ( ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) -> ( ph -> x = z ) ) |
| 90 |
36 42 45 89
|
ccase |
|- ( ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) ) /\ ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) ) -> ( ph -> x = z ) ) |
| 91 |
90
|
com12 |
|- ( ph -> ( ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) ) /\ ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) ) -> x = z ) ) |
| 92 |
91
|
alrimivv |
|- ( ph -> A. x A. z ( ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) ) /\ ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) ) -> x = z ) ) |
| 93 |
|
breq2 |
|- ( x = z -> ( seq m ( x. , F ) ~~> x <-> seq m ( x. , F ) ~~> z ) ) |
| 94 |
93
|
3anbi3d |
|- ( x = z -> ( ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) <-> ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) ) ) |
| 95 |
94
|
rexbidv |
|- ( x = z -> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) <-> E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) ) ) |
| 96 |
|
eqeq1 |
|- ( x = z -> ( x = ( seq 1 ( x. , G ) ` m ) <-> z = ( seq 1 ( x. , G ) ` m ) ) ) |
| 97 |
96
|
anbi2d |
|- ( x = z -> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) <-> ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) ) |
| 98 |
97
|
exbidv |
|- ( x = z -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) <-> E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) ) |
| 99 |
98
|
rexbidv |
|- ( x = z -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) <-> E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) ) |
| 100 |
95 99
|
orbi12d |
|- ( x = z -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) ) <-> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) ) ) |
| 101 |
100
|
mo4 |
|- ( E* x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) ) <-> A. x A. z ( ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) ) /\ ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) ) -> x = z ) ) |
| 102 |
92 101
|
sylibr |
|- ( ph -> E* x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) ) ) |