Step |
Hyp |
Ref |
Expression |
1 |
|
prodmo.1 |
|- F = ( k e. ZZ |-> if ( k e. A , B , 1 ) ) |
2 |
|
prodmo.2 |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
3 |
|
prodmo.3 |
|- G = ( j e. NN |-> [_ ( f ` j ) / k ]_ B ) |
4 |
|
3simpb |
|- ( ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) -> ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) ) |
5 |
4
|
reximi |
|- ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) -> E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) ) |
6 |
|
fveq2 |
|- ( m = w -> ( ZZ>= ` m ) = ( ZZ>= ` w ) ) |
7 |
6
|
sseq2d |
|- ( m = w -> ( A C_ ( ZZ>= ` m ) <-> A C_ ( ZZ>= ` w ) ) ) |
8 |
|
seqeq1 |
|- ( m = w -> seq m ( x. , F ) = seq w ( x. , F ) ) |
9 |
8
|
breq1d |
|- ( m = w -> ( seq m ( x. , F ) ~~> x <-> seq w ( x. , F ) ~~> x ) ) |
10 |
7 9
|
anbi12d |
|- ( m = w -> ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) <-> ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) ) ) |
11 |
10
|
cbvrexvw |
|- ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) <-> E. w e. ZZ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) ) |
12 |
|
reeanv |
|- ( E. w e. ZZ E. m e. NN ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) <-> ( E. w e. ZZ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) ) |
13 |
|
simprlr |
|- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> seq w ( x. , F ) ~~> x ) |
14 |
|
simprll |
|- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> A C_ ( ZZ>= ` w ) ) |
15 |
|
uzssz |
|- ( ZZ>= ` w ) C_ ZZ |
16 |
|
zssre |
|- ZZ C_ RR |
17 |
15 16
|
sstri |
|- ( ZZ>= ` w ) C_ RR |
18 |
14 17
|
sstrdi |
|- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> A C_ RR ) |
19 |
|
ltso |
|- < Or RR |
20 |
|
soss |
|- ( A C_ RR -> ( < Or RR -> < Or A ) ) |
21 |
18 19 20
|
mpisyl |
|- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> < Or A ) |
22 |
|
fzfi |
|- ( 1 ... m ) e. Fin |
23 |
|
ovex |
|- ( 1 ... m ) e. _V |
24 |
23
|
f1oen |
|- ( f : ( 1 ... m ) -1-1-onto-> A -> ( 1 ... m ) ~~ A ) |
25 |
24
|
ad2antll |
|- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> ( 1 ... m ) ~~ A ) |
26 |
25
|
ensymd |
|- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> A ~~ ( 1 ... m ) ) |
27 |
|
enfii |
|- ( ( ( 1 ... m ) e. Fin /\ A ~~ ( 1 ... m ) ) -> A e. Fin ) |
28 |
22 26 27
|
sylancr |
|- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> A e. Fin ) |
29 |
|
fz1iso |
|- ( ( < Or A /\ A e. Fin ) -> E. g g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
30 |
21 28 29
|
syl2anc |
|- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> E. g g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
31 |
2
|
ad4ant14 |
|- ( ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) /\ k e. A ) -> B e. CC ) |
32 |
|
eqid |
|- ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) = ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) |
33 |
|
simplrr |
|- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> m e. NN ) |
34 |
|
simplrl |
|- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> w e. ZZ ) |
35 |
|
simplll |
|- ( ( ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) -> A C_ ( ZZ>= ` w ) ) |
36 |
35
|
adantl |
|- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> A C_ ( ZZ>= ` w ) ) |
37 |
|
simprlr |
|- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> f : ( 1 ... m ) -1-1-onto-> A ) |
38 |
|
simprr |
|- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
39 |
1 31 3 32 33 34 36 37 38
|
prodmolem2a |
|- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> seq w ( x. , F ) ~~> ( seq 1 ( x. , G ) ` m ) ) |
40 |
39
|
expr |
|- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> ( g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) -> seq w ( x. , F ) ~~> ( seq 1 ( x. , G ) ` m ) ) ) |
41 |
40
|
exlimdv |
|- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> ( E. g g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) -> seq w ( x. , F ) ~~> ( seq 1 ( x. , G ) ` m ) ) ) |
42 |
30 41
|
mpd |
|- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> seq w ( x. , F ) ~~> ( seq 1 ( x. , G ) ` m ) ) |
43 |
|
climuni |
|- ( ( seq w ( x. , F ) ~~> x /\ seq w ( x. , F ) ~~> ( seq 1 ( x. , G ) ` m ) ) -> x = ( seq 1 ( x. , G ) ` m ) ) |
44 |
13 42 43
|
syl2anc |
|- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> x = ( seq 1 ( x. , G ) ` m ) ) |
45 |
|
eqeq2 |
|- ( z = ( seq 1 ( x. , G ) ` m ) -> ( x = z <-> x = ( seq 1 ( x. , G ) ` m ) ) ) |
46 |
44 45
|
syl5ibrcom |
|- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> ( z = ( seq 1 ( x. , G ) ` m ) -> x = z ) ) |
47 |
46
|
expr |
|- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) ) -> ( f : ( 1 ... m ) -1-1-onto-> A -> ( z = ( seq 1 ( x. , G ) ` m ) -> x = z ) ) ) |
48 |
47
|
impd |
|- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) ) -> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) -> x = z ) ) |
49 |
48
|
exlimdv |
|- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) ) -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) -> x = z ) ) |
50 |
49
|
expimpd |
|- ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) -> ( ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) -> x = z ) ) |
51 |
50
|
rexlimdvva |
|- ( ph -> ( E. w e. ZZ E. m e. NN ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) -> x = z ) ) |
52 |
12 51
|
syl5bir |
|- ( ph -> ( ( E. w e. ZZ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) -> x = z ) ) |
53 |
52
|
expdimp |
|- ( ( ph /\ E. w e. ZZ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) -> x = z ) ) |
54 |
11 53
|
sylan2b |
|- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) -> x = z ) ) |
55 |
5 54
|
sylan2 |
|- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) -> x = z ) ) |