| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							prodmo.1 | 
							 |-  F = ( k e. ZZ |-> if ( k e. A , B , 1 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							prodmo.2 | 
							 |-  ( ( ph /\ k e. A ) -> B e. CC )  | 
						
						
							| 3 | 
							
								
							 | 
							prodmo.3 | 
							 |-  G = ( j e. NN |-> [_ ( f ` j ) / k ]_ B )  | 
						
						
							| 4 | 
							
								
							 | 
							prodmolem2.4 | 
							 |-  H = ( j e. NN |-> [_ ( K ` j ) / k ]_ B )  | 
						
						
							| 5 | 
							
								
							 | 
							prodmolem2.5 | 
							 |-  ( ph -> N e. NN )  | 
						
						
							| 6 | 
							
								
							 | 
							prodmolem2.6 | 
							 |-  ( ph -> M e. ZZ )  | 
						
						
							| 7 | 
							
								
							 | 
							prodmolem2.7 | 
							 |-  ( ph -> A C_ ( ZZ>= ` M ) )  | 
						
						
							| 8 | 
							
								
							 | 
							prodmolem2.8 | 
							 |-  ( ph -> f : ( 1 ... N ) -1-1-onto-> A )  | 
						
						
							| 9 | 
							
								
							 | 
							prodmolem2.9 | 
							 |-  ( ph -> K Isom < , < ( ( 1 ... ( # ` A ) ) , A ) )  | 
						
						
							| 10 | 
							
								
							 | 
							fzfid | 
							 |-  ( ph -> ( 1 ... N ) e. Fin )  | 
						
						
							| 11 | 
							
								10 8
							 | 
							hasheqf1od | 
							 |-  ( ph -> ( # ` ( 1 ... N ) ) = ( # ` A ) )  | 
						
						
							| 12 | 
							
								5
							 | 
							nnnn0d | 
							 |-  ( ph -> N e. NN0 )  | 
						
						
							| 13 | 
							
								
							 | 
							hashfz1 | 
							 |-  ( N e. NN0 -> ( # ` ( 1 ... N ) ) = N )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							syl | 
							 |-  ( ph -> ( # ` ( 1 ... N ) ) = N )  | 
						
						
							| 15 | 
							
								11 14
							 | 
							eqtr3d | 
							 |-  ( ph -> ( # ` A ) = N )  | 
						
						
							| 16 | 
							
								15
							 | 
							oveq2d | 
							 |-  ( ph -> ( 1 ... ( # ` A ) ) = ( 1 ... N ) )  | 
						
						
							| 17 | 
							
								
							 | 
							isoeq4 | 
							 |-  ( ( 1 ... ( # ` A ) ) = ( 1 ... N ) -> ( K Isom < , < ( ( 1 ... ( # ` A ) ) , A ) <-> K Isom < , < ( ( 1 ... N ) , A ) ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							syl | 
							 |-  ( ph -> ( K Isom < , < ( ( 1 ... ( # ` A ) ) , A ) <-> K Isom < , < ( ( 1 ... N ) , A ) ) )  | 
						
						
							| 19 | 
							
								9 18
							 | 
							mpbid | 
							 |-  ( ph -> K Isom < , < ( ( 1 ... N ) , A ) )  | 
						
						
							| 20 | 
							
								
							 | 
							isof1o | 
							 |-  ( K Isom < , < ( ( 1 ... N ) , A ) -> K : ( 1 ... N ) -1-1-onto-> A )  | 
						
						
							| 21 | 
							
								
							 | 
							f1of | 
							 |-  ( K : ( 1 ... N ) -1-1-onto-> A -> K : ( 1 ... N ) --> A )  | 
						
						
							| 22 | 
							
								19 20 21
							 | 
							3syl | 
							 |-  ( ph -> K : ( 1 ... N ) --> A )  | 
						
						
							| 23 | 
							
								
							 | 
							nnuz | 
							 |-  NN = ( ZZ>= ` 1 )  | 
						
						
							| 24 | 
							
								5 23
							 | 
							eleqtrdi | 
							 |-  ( ph -> N e. ( ZZ>= ` 1 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							eluzfz2 | 
							 |-  ( N e. ( ZZ>= ` 1 ) -> N e. ( 1 ... N ) )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							syl | 
							 |-  ( ph -> N e. ( 1 ... N ) )  | 
						
						
							| 27 | 
							
								22 26
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( K ` N ) e. A )  | 
						
						
							| 28 | 
							
								7 27
							 | 
							sseldd | 
							 |-  ( ph -> ( K ` N ) e. ( ZZ>= ` M ) )  | 
						
						
							| 29 | 
							
								7
							 | 
							sselda | 
							 |-  ( ( ph /\ j e. A ) -> j e. ( ZZ>= ` M ) )  | 
						
						
							| 30 | 
							
								19 20
							 | 
							syl | 
							 |-  ( ph -> K : ( 1 ... N ) -1-1-onto-> A )  | 
						
						
							| 31 | 
							
								
							 | 
							f1ocnvfv2 | 
							 |-  ( ( K : ( 1 ... N ) -1-1-onto-> A /\ j e. A ) -> ( K ` ( `' K ` j ) ) = j )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							sylan | 
							 |-  ( ( ph /\ j e. A ) -> ( K ` ( `' K ` j ) ) = j )  | 
						
						
							| 33 | 
							
								
							 | 
							f1ocnv | 
							 |-  ( K : ( 1 ... N ) -1-1-onto-> A -> `' K : A -1-1-onto-> ( 1 ... N ) )  | 
						
						
							| 34 | 
							
								
							 | 
							f1of | 
							 |-  ( `' K : A -1-1-onto-> ( 1 ... N ) -> `' K : A --> ( 1 ... N ) )  | 
						
						
							| 35 | 
							
								30 33 34
							 | 
							3syl | 
							 |-  ( ph -> `' K : A --> ( 1 ... N ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							ffvelcdmda | 
							 |-  ( ( ph /\ j e. A ) -> ( `' K ` j ) e. ( 1 ... N ) )  | 
						
						
							| 37 | 
							
								
							 | 
							elfzle2 | 
							 |-  ( ( `' K ` j ) e. ( 1 ... N ) -> ( `' K ` j ) <_ N )  | 
						
						
							| 38 | 
							
								36 37
							 | 
							syl | 
							 |-  ( ( ph /\ j e. A ) -> ( `' K ` j ) <_ N )  | 
						
						
							| 39 | 
							
								19
							 | 
							adantr | 
							 |-  ( ( ph /\ j e. A ) -> K Isom < , < ( ( 1 ... N ) , A ) )  | 
						
						
							| 40 | 
							
								
							 | 
							fzssuz | 
							 |-  ( 1 ... N ) C_ ( ZZ>= ` 1 )  | 
						
						
							| 41 | 
							
								
							 | 
							uzssz | 
							 |-  ( ZZ>= ` 1 ) C_ ZZ  | 
						
						
							| 42 | 
							
								
							 | 
							zssre | 
							 |-  ZZ C_ RR  | 
						
						
							| 43 | 
							
								41 42
							 | 
							sstri | 
							 |-  ( ZZ>= ` 1 ) C_ RR  | 
						
						
							| 44 | 
							
								40 43
							 | 
							sstri | 
							 |-  ( 1 ... N ) C_ RR  | 
						
						
							| 45 | 
							
								
							 | 
							ressxr | 
							 |-  RR C_ RR*  | 
						
						
							| 46 | 
							
								44 45
							 | 
							sstri | 
							 |-  ( 1 ... N ) C_ RR*  | 
						
						
							| 47 | 
							
								46
							 | 
							a1i | 
							 |-  ( ( ph /\ j e. A ) -> ( 1 ... N ) C_ RR* )  | 
						
						
							| 48 | 
							
								
							 | 
							uzssz | 
							 |-  ( ZZ>= ` M ) C_ ZZ  | 
						
						
							| 49 | 
							
								48 42
							 | 
							sstri | 
							 |-  ( ZZ>= ` M ) C_ RR  | 
						
						
							| 50 | 
							
								49 45
							 | 
							sstri | 
							 |-  ( ZZ>= ` M ) C_ RR*  | 
						
						
							| 51 | 
							
								7 50
							 | 
							sstrdi | 
							 |-  ( ph -> A C_ RR* )  | 
						
						
							| 52 | 
							
								51
							 | 
							adantr | 
							 |-  ( ( ph /\ j e. A ) -> A C_ RR* )  | 
						
						
							| 53 | 
							
								26
							 | 
							adantr | 
							 |-  ( ( ph /\ j e. A ) -> N e. ( 1 ... N ) )  | 
						
						
							| 54 | 
							
								
							 | 
							leisorel | 
							 |-  ( ( K Isom < , < ( ( 1 ... N ) , A ) /\ ( ( 1 ... N ) C_ RR* /\ A C_ RR* ) /\ ( ( `' K ` j ) e. ( 1 ... N ) /\ N e. ( 1 ... N ) ) ) -> ( ( `' K ` j ) <_ N <-> ( K ` ( `' K ` j ) ) <_ ( K ` N ) ) )  | 
						
						
							| 55 | 
							
								39 47 52 36 53 54
							 | 
							syl122anc | 
							 |-  ( ( ph /\ j e. A ) -> ( ( `' K ` j ) <_ N <-> ( K ` ( `' K ` j ) ) <_ ( K ` N ) ) )  | 
						
						
							| 56 | 
							
								38 55
							 | 
							mpbid | 
							 |-  ( ( ph /\ j e. A ) -> ( K ` ( `' K ` j ) ) <_ ( K ` N ) )  | 
						
						
							| 57 | 
							
								32 56
							 | 
							eqbrtrrd | 
							 |-  ( ( ph /\ j e. A ) -> j <_ ( K ` N ) )  | 
						
						
							| 58 | 
							
								7 48
							 | 
							sstrdi | 
							 |-  ( ph -> A C_ ZZ )  | 
						
						
							| 59 | 
							
								58
							 | 
							sselda | 
							 |-  ( ( ph /\ j e. A ) -> j e. ZZ )  | 
						
						
							| 60 | 
							
								
							 | 
							eluzelz | 
							 |-  ( ( K ` N ) e. ( ZZ>= ` M ) -> ( K ` N ) e. ZZ )  | 
						
						
							| 61 | 
							
								28 60
							 | 
							syl | 
							 |-  ( ph -> ( K ` N ) e. ZZ )  | 
						
						
							| 62 | 
							
								61
							 | 
							adantr | 
							 |-  ( ( ph /\ j e. A ) -> ( K ` N ) e. ZZ )  | 
						
						
							| 63 | 
							
								
							 | 
							eluz | 
							 |-  ( ( j e. ZZ /\ ( K ` N ) e. ZZ ) -> ( ( K ` N ) e. ( ZZ>= ` j ) <-> j <_ ( K ` N ) ) )  | 
						
						
							| 64 | 
							
								59 62 63
							 | 
							syl2anc | 
							 |-  ( ( ph /\ j e. A ) -> ( ( K ` N ) e. ( ZZ>= ` j ) <-> j <_ ( K ` N ) ) )  | 
						
						
							| 65 | 
							
								57 64
							 | 
							mpbird | 
							 |-  ( ( ph /\ j e. A ) -> ( K ` N ) e. ( ZZ>= ` j ) )  | 
						
						
							| 66 | 
							
								
							 | 
							elfzuzb | 
							 |-  ( j e. ( M ... ( K ` N ) ) <-> ( j e. ( ZZ>= ` M ) /\ ( K ` N ) e. ( ZZ>= ` j ) ) )  | 
						
						
							| 67 | 
							
								29 65 66
							 | 
							sylanbrc | 
							 |-  ( ( ph /\ j e. A ) -> j e. ( M ... ( K ` N ) ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							ex | 
							 |-  ( ph -> ( j e. A -> j e. ( M ... ( K ` N ) ) ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							ssrdv | 
							 |-  ( ph -> A C_ ( M ... ( K ` N ) ) )  | 
						
						
							| 70 | 
							
								1 2 28 69
							 | 
							fprodcvg | 
							 |-  ( ph -> seq M ( x. , F ) ~~> ( seq M ( x. , F ) ` ( K ` N ) ) )  | 
						
						
							| 71 | 
							
								
							 | 
							mullid | 
							 |-  ( m e. CC -> ( 1 x. m ) = m )  | 
						
						
							| 72 | 
							
								71
							 | 
							adantl | 
							 |-  ( ( ph /\ m e. CC ) -> ( 1 x. m ) = m )  | 
						
						
							| 73 | 
							
								
							 | 
							mulrid | 
							 |-  ( m e. CC -> ( m x. 1 ) = m )  | 
						
						
							| 74 | 
							
								73
							 | 
							adantl | 
							 |-  ( ( ph /\ m e. CC ) -> ( m x. 1 ) = m )  | 
						
						
							| 75 | 
							
								
							 | 
							mulcl | 
							 |-  ( ( m e. CC /\ x e. CC ) -> ( m x. x ) e. CC )  | 
						
						
							| 76 | 
							
								75
							 | 
							adantl | 
							 |-  ( ( ph /\ ( m e. CC /\ x e. CC ) ) -> ( m x. x ) e. CC )  | 
						
						
							| 77 | 
							
								
							 | 
							1cnd | 
							 |-  ( ph -> 1 e. CC )  | 
						
						
							| 78 | 
							
								26 16
							 | 
							eleqtrrd | 
							 |-  ( ph -> N e. ( 1 ... ( # ` A ) ) )  | 
						
						
							| 79 | 
							
								
							 | 
							iftrue | 
							 |-  ( k e. A -> if ( k e. A , B , 1 ) = B )  | 
						
						
							| 80 | 
							
								79
							 | 
							adantl | 
							 |-  ( ( ph /\ k e. A ) -> if ( k e. A , B , 1 ) = B )  | 
						
						
							| 81 | 
							
								80 2
							 | 
							eqeltrd | 
							 |-  ( ( ph /\ k e. A ) -> if ( k e. A , B , 1 ) e. CC )  | 
						
						
							| 82 | 
							
								81
							 | 
							ex | 
							 |-  ( ph -> ( k e. A -> if ( k e. A , B , 1 ) e. CC ) )  | 
						
						
							| 83 | 
							
								
							 | 
							iffalse | 
							 |-  ( -. k e. A -> if ( k e. A , B , 1 ) = 1 )  | 
						
						
							| 84 | 
							
								
							 | 
							ax-1cn | 
							 |-  1 e. CC  | 
						
						
							| 85 | 
							
								83 84
							 | 
							eqeltrdi | 
							 |-  ( -. k e. A -> if ( k e. A , B , 1 ) e. CC )  | 
						
						
							| 86 | 
							
								82 85
							 | 
							pm2.61d1 | 
							 |-  ( ph -> if ( k e. A , B , 1 ) e. CC )  | 
						
						
							| 87 | 
							
								86
							 | 
							adantr | 
							 |-  ( ( ph /\ k e. ZZ ) -> if ( k e. A , B , 1 ) e. CC )  | 
						
						
							| 88 | 
							
								87 1
							 | 
							fmptd | 
							 |-  ( ph -> F : ZZ --> CC )  | 
						
						
							| 89 | 
							
								
							 | 
							elfzelz | 
							 |-  ( m e. ( M ... ( K ` ( # ` A ) ) ) -> m e. ZZ )  | 
						
						
							| 90 | 
							
								
							 | 
							ffvelcdm | 
							 |-  ( ( F : ZZ --> CC /\ m e. ZZ ) -> ( F ` m ) e. CC )  | 
						
						
							| 91 | 
							
								88 89 90
							 | 
							syl2an | 
							 |-  ( ( ph /\ m e. ( M ... ( K ` ( # ` A ) ) ) ) -> ( F ` m ) e. CC )  | 
						
						
							| 92 | 
							
								
							 | 
							fveqeq2 | 
							 |-  ( k = m -> ( ( F ` k ) = 1 <-> ( F ` m ) = 1 ) )  | 
						
						
							| 93 | 
							
								
							 | 
							eldifi | 
							 |-  ( k e. ( ( M ... ( K ` ( # ` A ) ) ) \ A ) -> k e. ( M ... ( K ` ( # ` A ) ) ) )  | 
						
						
							| 94 | 
							
								93
							 | 
							elfzelzd | 
							 |-  ( k e. ( ( M ... ( K ` ( # ` A ) ) ) \ A ) -> k e. ZZ )  | 
						
						
							| 95 | 
							
								
							 | 
							eldifn | 
							 |-  ( k e. ( ( M ... ( K ` ( # ` A ) ) ) \ A ) -> -. k e. A )  | 
						
						
							| 96 | 
							
								95 83
							 | 
							syl | 
							 |-  ( k e. ( ( M ... ( K ` ( # ` A ) ) ) \ A ) -> if ( k e. A , B , 1 ) = 1 )  | 
						
						
							| 97 | 
							
								96 84
							 | 
							eqeltrdi | 
							 |-  ( k e. ( ( M ... ( K ` ( # ` A ) ) ) \ A ) -> if ( k e. A , B , 1 ) e. CC )  | 
						
						
							| 98 | 
							
								1
							 | 
							fvmpt2 | 
							 |-  ( ( k e. ZZ /\ if ( k e. A , B , 1 ) e. CC ) -> ( F ` k ) = if ( k e. A , B , 1 ) )  | 
						
						
							| 99 | 
							
								94 97 98
							 | 
							syl2anc | 
							 |-  ( k e. ( ( M ... ( K ` ( # ` A ) ) ) \ A ) -> ( F ` k ) = if ( k e. A , B , 1 ) )  | 
						
						
							| 100 | 
							
								99 96
							 | 
							eqtrd | 
							 |-  ( k e. ( ( M ... ( K ` ( # ` A ) ) ) \ A ) -> ( F ` k ) = 1 )  | 
						
						
							| 101 | 
							
								92 100
							 | 
							vtoclga | 
							 |-  ( m e. ( ( M ... ( K ` ( # ` A ) ) ) \ A ) -> ( F ` m ) = 1 )  | 
						
						
							| 102 | 
							
								101
							 | 
							adantl | 
							 |-  ( ( ph /\ m e. ( ( M ... ( K ` ( # ` A ) ) ) \ A ) ) -> ( F ` m ) = 1 )  | 
						
						
							| 103 | 
							
								
							 | 
							isof1o | 
							 |-  ( K Isom < , < ( ( 1 ... ( # ` A ) ) , A ) -> K : ( 1 ... ( # ` A ) ) -1-1-onto-> A )  | 
						
						
							| 104 | 
							
								
							 | 
							f1of | 
							 |-  ( K : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> K : ( 1 ... ( # ` A ) ) --> A )  | 
						
						
							| 105 | 
							
								9 103 104
							 | 
							3syl | 
							 |-  ( ph -> K : ( 1 ... ( # ` A ) ) --> A )  | 
						
						
							| 106 | 
							
								105
							 | 
							ffvelcdmda | 
							 |-  ( ( ph /\ x e. ( 1 ... ( # ` A ) ) ) -> ( K ` x ) e. A )  | 
						
						
							| 107 | 
							
								106
							 | 
							iftrued | 
							 |-  ( ( ph /\ x e. ( 1 ... ( # ` A ) ) ) -> if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 ) = [_ ( K ` x ) / k ]_ B )  | 
						
						
							| 108 | 
							
								58
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( 1 ... ( # ` A ) ) ) -> A C_ ZZ )  | 
						
						
							| 109 | 
							
								108 106
							 | 
							sseldd | 
							 |-  ( ( ph /\ x e. ( 1 ... ( # ` A ) ) ) -> ( K ` x ) e. ZZ )  | 
						
						
							| 110 | 
							
								
							 | 
							nfv | 
							 |-  F/ k ph  | 
						
						
							| 111 | 
							
								
							 | 
							nfv | 
							 |-  F/ k ( K ` x ) e. A  | 
						
						
							| 112 | 
							
								
							 | 
							nfcsb1v | 
							 |-  F/_ k [_ ( K ` x ) / k ]_ B  | 
						
						
							| 113 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ k 1  | 
						
						
							| 114 | 
							
								111 112 113
							 | 
							nfif | 
							 |-  F/_ k if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 )  | 
						
						
							| 115 | 
							
								114
							 | 
							nfel1 | 
							 |-  F/ k if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 ) e. CC  | 
						
						
							| 116 | 
							
								110 115
							 | 
							nfim | 
							 |-  F/ k ( ph -> if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 ) e. CC )  | 
						
						
							| 117 | 
							
								
							 | 
							fvex | 
							 |-  ( K ` x ) e. _V  | 
						
						
							| 118 | 
							
								
							 | 
							eleq1 | 
							 |-  ( k = ( K ` x ) -> ( k e. A <-> ( K ` x ) e. A ) )  | 
						
						
							| 119 | 
							
								
							 | 
							csbeq1a | 
							 |-  ( k = ( K ` x ) -> B = [_ ( K ` x ) / k ]_ B )  | 
						
						
							| 120 | 
							
								118 119
							 | 
							ifbieq1d | 
							 |-  ( k = ( K ` x ) -> if ( k e. A , B , 1 ) = if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 ) )  | 
						
						
							| 121 | 
							
								120
							 | 
							eleq1d | 
							 |-  ( k = ( K ` x ) -> ( if ( k e. A , B , 1 ) e. CC <-> if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 ) e. CC ) )  | 
						
						
							| 122 | 
							
								121
							 | 
							imbi2d | 
							 |-  ( k = ( K ` x ) -> ( ( ph -> if ( k e. A , B , 1 ) e. CC ) <-> ( ph -> if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 ) e. CC ) ) )  | 
						
						
							| 123 | 
							
								116 117 122 86
							 | 
							vtoclf | 
							 |-  ( ph -> if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 ) e. CC )  | 
						
						
							| 124 | 
							
								123
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( 1 ... ( # ` A ) ) ) -> if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 ) e. CC )  | 
						
						
							| 125 | 
							
								
							 | 
							eleq1 | 
							 |-  ( n = ( K ` x ) -> ( n e. A <-> ( K ` x ) e. A ) )  | 
						
						
							| 126 | 
							
								
							 | 
							csbeq1 | 
							 |-  ( n = ( K ` x ) -> [_ n / k ]_ B = [_ ( K ` x ) / k ]_ B )  | 
						
						
							| 127 | 
							
								125 126
							 | 
							ifbieq1d | 
							 |-  ( n = ( K ` x ) -> if ( n e. A , [_ n / k ]_ B , 1 ) = if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 ) )  | 
						
						
							| 128 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ n if ( k e. A , B , 1 )  | 
						
						
							| 129 | 
							
								
							 | 
							nfv | 
							 |-  F/ k n e. A  | 
						
						
							| 130 | 
							
								
							 | 
							nfcsb1v | 
							 |-  F/_ k [_ n / k ]_ B  | 
						
						
							| 131 | 
							
								129 130 113
							 | 
							nfif | 
							 |-  F/_ k if ( n e. A , [_ n / k ]_ B , 1 )  | 
						
						
							| 132 | 
							
								
							 | 
							eleq1 | 
							 |-  ( k = n -> ( k e. A <-> n e. A ) )  | 
						
						
							| 133 | 
							
								
							 | 
							csbeq1a | 
							 |-  ( k = n -> B = [_ n / k ]_ B )  | 
						
						
							| 134 | 
							
								132 133
							 | 
							ifbieq1d | 
							 |-  ( k = n -> if ( k e. A , B , 1 ) = if ( n e. A , [_ n / k ]_ B , 1 ) )  | 
						
						
							| 135 | 
							
								128 131 134
							 | 
							cbvmpt | 
							 |-  ( k e. ZZ |-> if ( k e. A , B , 1 ) ) = ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 1 ) )  | 
						
						
							| 136 | 
							
								1 135
							 | 
							eqtri | 
							 |-  F = ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 1 ) )  | 
						
						
							| 137 | 
							
								127 136
							 | 
							fvmptg | 
							 |-  ( ( ( K ` x ) e. ZZ /\ if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 ) e. CC ) -> ( F ` ( K ` x ) ) = if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 ) )  | 
						
						
							| 138 | 
							
								109 124 137
							 | 
							syl2anc | 
							 |-  ( ( ph /\ x e. ( 1 ... ( # ` A ) ) ) -> ( F ` ( K ` x ) ) = if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 ) )  | 
						
						
							| 139 | 
							
								
							 | 
							elfznn | 
							 |-  ( x e. ( 1 ... ( # ` A ) ) -> x e. NN )  | 
						
						
							| 140 | 
							
								107 124
							 | 
							eqeltrrd | 
							 |-  ( ( ph /\ x e. ( 1 ... ( # ` A ) ) ) -> [_ ( K ` x ) / k ]_ B e. CC )  | 
						
						
							| 141 | 
							
								
							 | 
							fveq2 | 
							 |-  ( j = x -> ( K ` j ) = ( K ` x ) )  | 
						
						
							| 142 | 
							
								141
							 | 
							csbeq1d | 
							 |-  ( j = x -> [_ ( K ` j ) / k ]_ B = [_ ( K ` x ) / k ]_ B )  | 
						
						
							| 143 | 
							
								142 4
							 | 
							fvmptg | 
							 |-  ( ( x e. NN /\ [_ ( K ` x ) / k ]_ B e. CC ) -> ( H ` x ) = [_ ( K ` x ) / k ]_ B )  | 
						
						
							| 144 | 
							
								139 140 143
							 | 
							syl2an2 | 
							 |-  ( ( ph /\ x e. ( 1 ... ( # ` A ) ) ) -> ( H ` x ) = [_ ( K ` x ) / k ]_ B )  | 
						
						
							| 145 | 
							
								107 138 144
							 | 
							3eqtr4rd | 
							 |-  ( ( ph /\ x e. ( 1 ... ( # ` A ) ) ) -> ( H ` x ) = ( F ` ( K ` x ) ) )  | 
						
						
							| 146 | 
							
								72 74 76 77 9 78 7 91 102 145
							 | 
							seqcoll | 
							 |-  ( ph -> ( seq M ( x. , F ) ` ( K ` N ) ) = ( seq 1 ( x. , H ) ` N ) )  | 
						
						
							| 147 | 
							
								5 5
							 | 
							jca | 
							 |-  ( ph -> ( N e. NN /\ N e. NN ) )  | 
						
						
							| 148 | 
							
								1 2 3 4 147 8 30
							 | 
							prodmolem3 | 
							 |-  ( ph -> ( seq 1 ( x. , G ) ` N ) = ( seq 1 ( x. , H ) ` N ) )  | 
						
						
							| 149 | 
							
								146 148
							 | 
							eqtr4d | 
							 |-  ( ph -> ( seq M ( x. , F ) ` ( K ` N ) ) = ( seq 1 ( x. , G ) ` N ) )  | 
						
						
							| 150 | 
							
								70 149
							 | 
							breqtrd | 
							 |-  ( ph -> seq M ( x. , F ) ~~> ( seq 1 ( x. , G ) ` N ) )  |