Metamath Proof Explorer


Theorem prodpr

Description: A product over a pair is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022)

Ref Expression
Hypotheses prodpr.1
|- ( k = A -> D = E )
prodpr.2
|- ( k = B -> D = F )
prodpr.a
|- ( ph -> A e. V )
prodpr.b
|- ( ph -> B e. W )
prodpr.e
|- ( ph -> E e. CC )
prodpr.f
|- ( ph -> F e. CC )
prodpr.3
|- ( ph -> A =/= B )
Assertion prodpr
|- ( ph -> prod_ k e. { A , B } D = ( E x. F ) )

Proof

Step Hyp Ref Expression
1 prodpr.1
 |-  ( k = A -> D = E )
2 prodpr.2
 |-  ( k = B -> D = F )
3 prodpr.a
 |-  ( ph -> A e. V )
4 prodpr.b
 |-  ( ph -> B e. W )
5 prodpr.e
 |-  ( ph -> E e. CC )
6 prodpr.f
 |-  ( ph -> F e. CC )
7 prodpr.3
 |-  ( ph -> A =/= B )
8 disjsn2
 |-  ( A =/= B -> ( { A } i^i { B } ) = (/) )
9 7 8 syl
 |-  ( ph -> ( { A } i^i { B } ) = (/) )
10 df-pr
 |-  { A , B } = ( { A } u. { B } )
11 10 a1i
 |-  ( ph -> { A , B } = ( { A } u. { B } ) )
12 prfi
 |-  { A , B } e. Fin
13 12 a1i
 |-  ( ph -> { A , B } e. Fin )
14 vex
 |-  k e. _V
15 14 elpr
 |-  ( k e. { A , B } <-> ( k = A \/ k = B ) )
16 1 adantl
 |-  ( ( ph /\ k = A ) -> D = E )
17 5 adantr
 |-  ( ( ph /\ k = A ) -> E e. CC )
18 16 17 eqeltrd
 |-  ( ( ph /\ k = A ) -> D e. CC )
19 2 adantl
 |-  ( ( ph /\ k = B ) -> D = F )
20 6 adantr
 |-  ( ( ph /\ k = B ) -> F e. CC )
21 19 20 eqeltrd
 |-  ( ( ph /\ k = B ) -> D e. CC )
22 18 21 jaodan
 |-  ( ( ph /\ ( k = A \/ k = B ) ) -> D e. CC )
23 15 22 sylan2b
 |-  ( ( ph /\ k e. { A , B } ) -> D e. CC )
24 9 11 13 23 fprodsplit
 |-  ( ph -> prod_ k e. { A , B } D = ( prod_ k e. { A } D x. prod_ k e. { B } D ) )
25 1 prodsn
 |-  ( ( A e. V /\ E e. CC ) -> prod_ k e. { A } D = E )
26 3 5 25 syl2anc
 |-  ( ph -> prod_ k e. { A } D = E )
27 2 prodsn
 |-  ( ( B e. W /\ F e. CC ) -> prod_ k e. { B } D = F )
28 4 6 27 syl2anc
 |-  ( ph -> prod_ k e. { B } D = F )
29 26 28 oveq12d
 |-  ( ph -> ( prod_ k e. { A } D x. prod_ k e. { B } D ) = ( E x. F ) )
30 24 29 eqtrd
 |-  ( ph -> prod_ k e. { A , B } D = ( E x. F ) )