Step |
Hyp |
Ref |
Expression |
1 |
|
prodpr.1 |
|- ( k = A -> D = E ) |
2 |
|
prodpr.2 |
|- ( k = B -> D = F ) |
3 |
|
prodpr.a |
|- ( ph -> A e. V ) |
4 |
|
prodpr.b |
|- ( ph -> B e. W ) |
5 |
|
prodpr.e |
|- ( ph -> E e. CC ) |
6 |
|
prodpr.f |
|- ( ph -> F e. CC ) |
7 |
|
prodpr.3 |
|- ( ph -> A =/= B ) |
8 |
|
disjsn2 |
|- ( A =/= B -> ( { A } i^i { B } ) = (/) ) |
9 |
7 8
|
syl |
|- ( ph -> ( { A } i^i { B } ) = (/) ) |
10 |
|
df-pr |
|- { A , B } = ( { A } u. { B } ) |
11 |
10
|
a1i |
|- ( ph -> { A , B } = ( { A } u. { B } ) ) |
12 |
|
prfi |
|- { A , B } e. Fin |
13 |
12
|
a1i |
|- ( ph -> { A , B } e. Fin ) |
14 |
|
vex |
|- k e. _V |
15 |
14
|
elpr |
|- ( k e. { A , B } <-> ( k = A \/ k = B ) ) |
16 |
1
|
adantl |
|- ( ( ph /\ k = A ) -> D = E ) |
17 |
5
|
adantr |
|- ( ( ph /\ k = A ) -> E e. CC ) |
18 |
16 17
|
eqeltrd |
|- ( ( ph /\ k = A ) -> D e. CC ) |
19 |
2
|
adantl |
|- ( ( ph /\ k = B ) -> D = F ) |
20 |
6
|
adantr |
|- ( ( ph /\ k = B ) -> F e. CC ) |
21 |
19 20
|
eqeltrd |
|- ( ( ph /\ k = B ) -> D e. CC ) |
22 |
18 21
|
jaodan |
|- ( ( ph /\ ( k = A \/ k = B ) ) -> D e. CC ) |
23 |
15 22
|
sylan2b |
|- ( ( ph /\ k e. { A , B } ) -> D e. CC ) |
24 |
9 11 13 23
|
fprodsplit |
|- ( ph -> prod_ k e. { A , B } D = ( prod_ k e. { A } D x. prod_ k e. { B } D ) ) |
25 |
1
|
prodsn |
|- ( ( A e. V /\ E e. CC ) -> prod_ k e. { A } D = E ) |
26 |
3 5 25
|
syl2anc |
|- ( ph -> prod_ k e. { A } D = E ) |
27 |
2
|
prodsn |
|- ( ( B e. W /\ F e. CC ) -> prod_ k e. { B } D = F ) |
28 |
4 6 27
|
syl2anc |
|- ( ph -> prod_ k e. { B } D = F ) |
29 |
26 28
|
oveq12d |
|- ( ph -> ( prod_ k e. { A } D x. prod_ k e. { B } D ) = ( E x. F ) ) |
30 |
24 29
|
eqtrd |
|- ( ph -> prod_ k e. { A , B } D = ( E x. F ) ) |