| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prodmo.1 |
|- F = ( k e. ZZ |-> if ( k e. A , B , 1 ) ) |
| 2 |
|
prodmo.2 |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
| 3 |
|
prodrb.4 |
|- ( ph -> M e. ZZ ) |
| 4 |
|
prodrb.5 |
|- ( ph -> N e. ZZ ) |
| 5 |
|
prodrb.6 |
|- ( ph -> A C_ ( ZZ>= ` M ) ) |
| 6 |
|
prodrb.7 |
|- ( ph -> A C_ ( ZZ>= ` N ) ) |
| 7 |
1 2 3 4 5 6
|
prodrblem2 |
|- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( seq M ( x. , F ) ~~> C <-> seq N ( x. , F ) ~~> C ) ) |
| 8 |
1 2 4 3 6 5
|
prodrblem2 |
|- ( ( ph /\ M e. ( ZZ>= ` N ) ) -> ( seq N ( x. , F ) ~~> C <-> seq M ( x. , F ) ~~> C ) ) |
| 9 |
8
|
bicomd |
|- ( ( ph /\ M e. ( ZZ>= ` N ) ) -> ( seq M ( x. , F ) ~~> C <-> seq N ( x. , F ) ~~> C ) ) |
| 10 |
|
uztric |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` M ) \/ M e. ( ZZ>= ` N ) ) ) |
| 11 |
3 4 10
|
syl2anc |
|- ( ph -> ( N e. ( ZZ>= ` M ) \/ M e. ( ZZ>= ` N ) ) ) |
| 12 |
7 9 11
|
mpjaodan |
|- ( ph -> ( seq M ( x. , F ) ~~> C <-> seq N ( x. , F ) ~~> C ) ) |