| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prodmo.1 |  |-  F = ( k e. ZZ |-> if ( k e. A , B , 1 ) ) | 
						
							| 2 |  | prodmo.2 |  |-  ( ( ph /\ k e. A ) -> B e. CC ) | 
						
							| 3 |  | prodrb.3 |  |-  ( ph -> N e. ( ZZ>= ` M ) ) | 
						
							| 4 |  | mullid |  |-  ( n e. CC -> ( 1 x. n ) = n ) | 
						
							| 5 | 4 | adantl |  |-  ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. CC ) -> ( 1 x. n ) = n ) | 
						
							| 6 |  | 1cnd |  |-  ( ( ph /\ A C_ ( ZZ>= ` N ) ) -> 1 e. CC ) | 
						
							| 7 | 3 | adantr |  |-  ( ( ph /\ A C_ ( ZZ>= ` N ) ) -> N e. ( ZZ>= ` M ) ) | 
						
							| 8 |  | iftrue |  |-  ( k e. A -> if ( k e. A , B , 1 ) = B ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( ph /\ k e. ZZ ) /\ k e. A ) -> if ( k e. A , B , 1 ) = B ) | 
						
							| 10 | 2 | adantlr |  |-  ( ( ( ph /\ k e. ZZ ) /\ k e. A ) -> B e. CC ) | 
						
							| 11 | 9 10 | eqeltrd |  |-  ( ( ( ph /\ k e. ZZ ) /\ k e. A ) -> if ( k e. A , B , 1 ) e. CC ) | 
						
							| 12 | 11 | ex |  |-  ( ( ph /\ k e. ZZ ) -> ( k e. A -> if ( k e. A , B , 1 ) e. CC ) ) | 
						
							| 13 |  | iffalse |  |-  ( -. k e. A -> if ( k e. A , B , 1 ) = 1 ) | 
						
							| 14 |  | ax-1cn |  |-  1 e. CC | 
						
							| 15 | 13 14 | eqeltrdi |  |-  ( -. k e. A -> if ( k e. A , B , 1 ) e. CC ) | 
						
							| 16 | 12 15 | pm2.61d1 |  |-  ( ( ph /\ k e. ZZ ) -> if ( k e. A , B , 1 ) e. CC ) | 
						
							| 17 | 16 1 | fmptd |  |-  ( ph -> F : ZZ --> CC ) | 
						
							| 18 |  | uzssz |  |-  ( ZZ>= ` M ) C_ ZZ | 
						
							| 19 | 18 3 | sselid |  |-  ( ph -> N e. ZZ ) | 
						
							| 20 | 17 19 | ffvelcdmd |  |-  ( ph -> ( F ` N ) e. CC ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ph /\ A C_ ( ZZ>= ` N ) ) -> ( F ` N ) e. CC ) | 
						
							| 22 |  | elfzelz |  |-  ( n e. ( M ... ( N - 1 ) ) -> n e. ZZ ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> n e. ZZ ) | 
						
							| 24 |  | simplr |  |-  ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> A C_ ( ZZ>= ` N ) ) | 
						
							| 25 | 19 | zcnd |  |-  ( ph -> N e. CC ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ph /\ A C_ ( ZZ>= ` N ) ) -> N e. CC ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> N e. CC ) | 
						
							| 28 |  | 1cnd |  |-  ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> 1 e. CC ) | 
						
							| 29 | 27 28 | npcand |  |-  ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 30 | 29 | fveq2d |  |-  ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> ( ZZ>= ` ( ( N - 1 ) + 1 ) ) = ( ZZ>= ` N ) ) | 
						
							| 31 | 24 30 | sseqtrrd |  |-  ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> A C_ ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) | 
						
							| 32 |  | fznuz |  |-  ( n e. ( M ... ( N - 1 ) ) -> -. n e. ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> -. n e. ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) | 
						
							| 34 | 31 33 | ssneldd |  |-  ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> -. n e. A ) | 
						
							| 35 | 23 34 | eldifd |  |-  ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> n e. ( ZZ \ A ) ) | 
						
							| 36 |  | fveqeq2 |  |-  ( k = n -> ( ( F ` k ) = 1 <-> ( F ` n ) = 1 ) ) | 
						
							| 37 |  | eldifi |  |-  ( k e. ( ZZ \ A ) -> k e. ZZ ) | 
						
							| 38 |  | eldifn |  |-  ( k e. ( ZZ \ A ) -> -. k e. A ) | 
						
							| 39 | 38 13 | syl |  |-  ( k e. ( ZZ \ A ) -> if ( k e. A , B , 1 ) = 1 ) | 
						
							| 40 | 39 14 | eqeltrdi |  |-  ( k e. ( ZZ \ A ) -> if ( k e. A , B , 1 ) e. CC ) | 
						
							| 41 | 1 | fvmpt2 |  |-  ( ( k e. ZZ /\ if ( k e. A , B , 1 ) e. CC ) -> ( F ` k ) = if ( k e. A , B , 1 ) ) | 
						
							| 42 | 37 40 41 | syl2anc |  |-  ( k e. ( ZZ \ A ) -> ( F ` k ) = if ( k e. A , B , 1 ) ) | 
						
							| 43 | 42 39 | eqtrd |  |-  ( k e. ( ZZ \ A ) -> ( F ` k ) = 1 ) | 
						
							| 44 | 36 43 | vtoclga |  |-  ( n e. ( ZZ \ A ) -> ( F ` n ) = 1 ) | 
						
							| 45 | 35 44 | syl |  |-  ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> ( F ` n ) = 1 ) | 
						
							| 46 | 5 6 7 21 45 | seqid |  |-  ( ( ph /\ A C_ ( ZZ>= ` N ) ) -> ( seq M ( x. , F ) |` ( ZZ>= ` N ) ) = seq N ( x. , F ) ) |