Metamath Proof Explorer


Theorem prodrblem2

Description: Lemma for prodrb . (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypotheses prodmo.1
|- F = ( k e. ZZ |-> if ( k e. A , B , 1 ) )
prodmo.2
|- ( ( ph /\ k e. A ) -> B e. CC )
prodrb.4
|- ( ph -> M e. ZZ )
prodrb.5
|- ( ph -> N e. ZZ )
prodrb.6
|- ( ph -> A C_ ( ZZ>= ` M ) )
prodrb.7
|- ( ph -> A C_ ( ZZ>= ` N ) )
Assertion prodrblem2
|- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( seq M ( x. , F ) ~~> C <-> seq N ( x. , F ) ~~> C ) )

Proof

Step Hyp Ref Expression
1 prodmo.1
 |-  F = ( k e. ZZ |-> if ( k e. A , B , 1 ) )
2 prodmo.2
 |-  ( ( ph /\ k e. A ) -> B e. CC )
3 prodrb.4
 |-  ( ph -> M e. ZZ )
4 prodrb.5
 |-  ( ph -> N e. ZZ )
5 prodrb.6
 |-  ( ph -> A C_ ( ZZ>= ` M ) )
6 prodrb.7
 |-  ( ph -> A C_ ( ZZ>= ` N ) )
7 4 adantr
 |-  ( ( ph /\ N e. ( ZZ>= ` M ) ) -> N e. ZZ )
8 seqex
 |-  seq M ( x. , F ) e. _V
9 climres
 |-  ( ( N e. ZZ /\ seq M ( x. , F ) e. _V ) -> ( ( seq M ( x. , F ) |` ( ZZ>= ` N ) ) ~~> C <-> seq M ( x. , F ) ~~> C ) )
10 7 8 9 sylancl
 |-  ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( ( seq M ( x. , F ) |` ( ZZ>= ` N ) ) ~~> C <-> seq M ( x. , F ) ~~> C ) )
11 2 adantlr
 |-  ( ( ( ph /\ N e. ( ZZ>= ` M ) ) /\ k e. A ) -> B e. CC )
12 simpr
 |-  ( ( ph /\ N e. ( ZZ>= ` M ) ) -> N e. ( ZZ>= ` M ) )
13 1 11 12 prodrblem
 |-  ( ( ( ph /\ N e. ( ZZ>= ` M ) ) /\ A C_ ( ZZ>= ` N ) ) -> ( seq M ( x. , F ) |` ( ZZ>= ` N ) ) = seq N ( x. , F ) )
14 6 13 mpidan
 |-  ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( seq M ( x. , F ) |` ( ZZ>= ` N ) ) = seq N ( x. , F ) )
15 14 breq1d
 |-  ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( ( seq M ( x. , F ) |` ( ZZ>= ` N ) ) ~~> C <-> seq N ( x. , F ) ~~> C ) )
16 10 15 bitr3d
 |-  ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( seq M ( x. , F ) ~~> C <-> seq N ( x. , F ) ~~> C ) )