| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prodmo.1 |  |-  F = ( k e. ZZ |-> if ( k e. A , B , 1 ) ) | 
						
							| 2 |  | prodmo.2 |  |-  ( ( ph /\ k e. A ) -> B e. CC ) | 
						
							| 3 |  | prodrb.4 |  |-  ( ph -> M e. ZZ ) | 
						
							| 4 |  | prodrb.5 |  |-  ( ph -> N e. ZZ ) | 
						
							| 5 |  | prodrb.6 |  |-  ( ph -> A C_ ( ZZ>= ` M ) ) | 
						
							| 6 |  | prodrb.7 |  |-  ( ph -> A C_ ( ZZ>= ` N ) ) | 
						
							| 7 | 4 | adantr |  |-  ( ( ph /\ N e. ( ZZ>= ` M ) ) -> N e. ZZ ) | 
						
							| 8 |  | seqex |  |-  seq M ( x. , F ) e. _V | 
						
							| 9 |  | climres |  |-  ( ( N e. ZZ /\ seq M ( x. , F ) e. _V ) -> ( ( seq M ( x. , F ) |` ( ZZ>= ` N ) ) ~~> C <-> seq M ( x. , F ) ~~> C ) ) | 
						
							| 10 | 7 8 9 | sylancl |  |-  ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( ( seq M ( x. , F ) |` ( ZZ>= ` N ) ) ~~> C <-> seq M ( x. , F ) ~~> C ) ) | 
						
							| 11 | 2 | adantlr |  |-  ( ( ( ph /\ N e. ( ZZ>= ` M ) ) /\ k e. A ) -> B e. CC ) | 
						
							| 12 |  | simpr |  |-  ( ( ph /\ N e. ( ZZ>= ` M ) ) -> N e. ( ZZ>= ` M ) ) | 
						
							| 13 | 1 11 12 | prodrblem |  |-  ( ( ( ph /\ N e. ( ZZ>= ` M ) ) /\ A C_ ( ZZ>= ` N ) ) -> ( seq M ( x. , F ) |` ( ZZ>= ` N ) ) = seq N ( x. , F ) ) | 
						
							| 14 | 6 13 | mpidan |  |-  ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( seq M ( x. , F ) |` ( ZZ>= ` N ) ) = seq N ( x. , F ) ) | 
						
							| 15 | 14 | breq1d |  |-  ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( ( seq M ( x. , F ) |` ( ZZ>= ` N ) ) ~~> C <-> seq N ( x. , F ) ~~> C ) ) | 
						
							| 16 | 10 15 | bitr3d |  |-  ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( seq M ( x. , F ) ~~> C <-> seq N ( x. , F ) ~~> C ) ) |