Description: A product of the singleton is the term. (Contributed by Scott Fenton, 25-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | prodsns | |- ( ( M e. V /\ [_ M / k ]_ A e. CC ) -> prod_ k e. { M } A = [_ M / k ]_ A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv | |- F/_ n A |
|
2 | nfcsb1v | |- F/_ k [_ n / k ]_ A |
|
3 | csbeq1a | |- ( k = n -> A = [_ n / k ]_ A ) |
|
4 | 1 2 3 | cbvprodi | |- prod_ k e. { M } A = prod_ n e. { M } [_ n / k ]_ A |
5 | csbeq1 | |- ( n = M -> [_ n / k ]_ A = [_ M / k ]_ A ) |
|
6 | 5 | prodsn | |- ( ( M e. V /\ [_ M / k ]_ A e. CC ) -> prod_ n e. { M } [_ n / k ]_ A = [_ M / k ]_ A ) |
7 | 4 6 | eqtrid | |- ( ( M e. V /\ [_ M / k ]_ A e. CC ) -> prod_ k e. { M } A = [_ M / k ]_ A ) |