Metamath Proof Explorer


Theorem prodsns

Description: A product of the singleton is the term. (Contributed by Scott Fenton, 25-Dec-2017)

Ref Expression
Assertion prodsns
|- ( ( M e. V /\ [_ M / k ]_ A e. CC ) -> prod_ k e. { M } A = [_ M / k ]_ A )

Proof

Step Hyp Ref Expression
1 nfcv
 |-  F/_ n A
2 nfcsb1v
 |-  F/_ k [_ n / k ]_ A
3 csbeq1a
 |-  ( k = n -> A = [_ n / k ]_ A )
4 1 2 3 cbvprodi
 |-  prod_ k e. { M } A = prod_ n e. { M } [_ n / k ]_ A
5 csbeq1
 |-  ( n = M -> [_ n / k ]_ A = [_ M / k ]_ A )
6 5 prodsn
 |-  ( ( M e. V /\ [_ M / k ]_ A e. CC ) -> prod_ n e. { M } [_ n / k ]_ A = [_ M / k ]_ A )
7 4 6 eqtrid
 |-  ( ( M e. V /\ [_ M / k ]_ A e. CC ) -> prod_ k e. { M } A = [_ M / k ]_ A )