Step |
Hyp |
Ref |
Expression |
1 |
|
prodpr.1 |
|- ( k = A -> D = E ) |
2 |
|
prodpr.2 |
|- ( k = B -> D = F ) |
3 |
|
prodpr.a |
|- ( ph -> A e. V ) |
4 |
|
prodpr.b |
|- ( ph -> B e. W ) |
5 |
|
prodpr.e |
|- ( ph -> E e. CC ) |
6 |
|
prodpr.f |
|- ( ph -> F e. CC ) |
7 |
|
prodpr.3 |
|- ( ph -> A =/= B ) |
8 |
|
prodtp.1 |
|- ( k = C -> D = G ) |
9 |
|
prodtp.c |
|- ( ph -> C e. X ) |
10 |
|
prodtp.g |
|- ( ph -> G e. CC ) |
11 |
|
prodtp.2 |
|- ( ph -> A =/= C ) |
12 |
|
prodtp.3 |
|- ( ph -> B =/= C ) |
13 |
|
disjprsn |
|- ( ( A =/= C /\ B =/= C ) -> ( { A , B } i^i { C } ) = (/) ) |
14 |
11 12 13
|
syl2anc |
|- ( ph -> ( { A , B } i^i { C } ) = (/) ) |
15 |
|
df-tp |
|- { A , B , C } = ( { A , B } u. { C } ) |
16 |
15
|
a1i |
|- ( ph -> { A , B , C } = ( { A , B } u. { C } ) ) |
17 |
|
tpfi |
|- { A , B , C } e. Fin |
18 |
17
|
a1i |
|- ( ph -> { A , B , C } e. Fin ) |
19 |
|
vex |
|- k e. _V |
20 |
19
|
eltp |
|- ( k e. { A , B , C } <-> ( k = A \/ k = B \/ k = C ) ) |
21 |
1
|
adantl |
|- ( ( ph /\ k = A ) -> D = E ) |
22 |
5
|
adantr |
|- ( ( ph /\ k = A ) -> E e. CC ) |
23 |
21 22
|
eqeltrd |
|- ( ( ph /\ k = A ) -> D e. CC ) |
24 |
23
|
adantlr |
|- ( ( ( ph /\ ( k = A \/ k = B \/ k = C ) ) /\ k = A ) -> D e. CC ) |
25 |
2
|
adantl |
|- ( ( ph /\ k = B ) -> D = F ) |
26 |
6
|
adantr |
|- ( ( ph /\ k = B ) -> F e. CC ) |
27 |
25 26
|
eqeltrd |
|- ( ( ph /\ k = B ) -> D e. CC ) |
28 |
27
|
adantlr |
|- ( ( ( ph /\ ( k = A \/ k = B \/ k = C ) ) /\ k = B ) -> D e. CC ) |
29 |
8
|
adantl |
|- ( ( ph /\ k = C ) -> D = G ) |
30 |
10
|
adantr |
|- ( ( ph /\ k = C ) -> G e. CC ) |
31 |
29 30
|
eqeltrd |
|- ( ( ph /\ k = C ) -> D e. CC ) |
32 |
31
|
adantlr |
|- ( ( ( ph /\ ( k = A \/ k = B \/ k = C ) ) /\ k = C ) -> D e. CC ) |
33 |
|
simpr |
|- ( ( ph /\ ( k = A \/ k = B \/ k = C ) ) -> ( k = A \/ k = B \/ k = C ) ) |
34 |
24 28 32 33
|
mpjao3dan |
|- ( ( ph /\ ( k = A \/ k = B \/ k = C ) ) -> D e. CC ) |
35 |
20 34
|
sylan2b |
|- ( ( ph /\ k e. { A , B , C } ) -> D e. CC ) |
36 |
14 16 18 35
|
fprodsplit |
|- ( ph -> prod_ k e. { A , B , C } D = ( prod_ k e. { A , B } D x. prod_ k e. { C } D ) ) |
37 |
1 2 3 4 5 6 7
|
prodpr |
|- ( ph -> prod_ k e. { A , B } D = ( E x. F ) ) |
38 |
8
|
prodsn |
|- ( ( C e. X /\ G e. CC ) -> prod_ k e. { C } D = G ) |
39 |
9 10 38
|
syl2anc |
|- ( ph -> prod_ k e. { C } D = G ) |
40 |
37 39
|
oveq12d |
|- ( ph -> ( prod_ k e. { A , B } D x. prod_ k e. { C } D ) = ( ( E x. F ) x. G ) ) |
41 |
36 40
|
eqtrd |
|- ( ph -> prod_ k e. { A , B , C } D = ( ( E x. F ) x. G ) ) |