Description: An unordered pair containing two proper classes is the empty set. (Contributed by NM, 22-Mar-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | prprc | |- ( ( -. A e. _V /\ -. B e. _V ) -> { A , B } = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prprc1 | |- ( -. A e. _V -> { A , B } = { B } ) |
|
2 | snprc | |- ( -. B e. _V <-> { B } = (/) ) |
|
3 | 2 | biimpi | |- ( -. B e. _V -> { B } = (/) ) |
4 | 1 3 | sylan9eq | |- ( ( -. A e. _V /\ -. B e. _V ) -> { A , B } = (/) ) |