Metamath Proof Explorer


Theorem prprc1

Description: A proper class vanishes in an unordered pair. (Contributed by NM, 15-Jul-1993)

Ref Expression
Assertion prprc1
|- ( -. A e. _V -> { A , B } = { B } )

Proof

Step Hyp Ref Expression
1 snprc
 |-  ( -. A e. _V <-> { A } = (/) )
2 uneq1
 |-  ( { A } = (/) -> ( { A } u. { B } ) = ( (/) u. { B } ) )
3 df-pr
 |-  { A , B } = ( { A } u. { B } )
4 uncom
 |-  ( (/) u. { B } ) = ( { B } u. (/) )
5 un0
 |-  ( { B } u. (/) ) = { B }
6 4 5 eqtr2i
 |-  { B } = ( (/) u. { B } )
7 2 3 6 3eqtr4g
 |-  ( { A } = (/) -> { A , B } = { B } )
8 1 7 sylbi
 |-  ( -. A e. _V -> { A , B } = { B } )