| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordtNEW.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | ordtNEW.l |  |-  .<_ = ( ( le ` K ) i^i ( B X. B ) ) | 
						
							| 3 | 2 | dmeqi |  |-  dom .<_ = dom ( ( le ` K ) i^i ( B X. B ) ) | 
						
							| 4 | 3 | eleq2i |  |-  ( x e. dom .<_ <-> x e. dom ( ( le ` K ) i^i ( B X. B ) ) ) | 
						
							| 5 |  | vex |  |-  x e. _V | 
						
							| 6 | 5 | eldm2 |  |-  ( x e. dom ( ( le ` K ) i^i ( B X. B ) ) <-> E. y <. x , y >. e. ( ( le ` K ) i^i ( B X. B ) ) ) | 
						
							| 7 |  | eqid |  |-  ( le ` K ) = ( le ` K ) | 
						
							| 8 | 1 7 | prsref |  |-  ( ( K e. Proset /\ x e. B ) -> x ( le ` K ) x ) | 
						
							| 9 |  | df-br |  |-  ( x ( le ` K ) x <-> <. x , x >. e. ( le ` K ) ) | 
						
							| 10 | 8 9 | sylib |  |-  ( ( K e. Proset /\ x e. B ) -> <. x , x >. e. ( le ` K ) ) | 
						
							| 11 |  | simpr |  |-  ( ( K e. Proset /\ x e. B ) -> x e. B ) | 
						
							| 12 | 11 11 | opelxpd |  |-  ( ( K e. Proset /\ x e. B ) -> <. x , x >. e. ( B X. B ) ) | 
						
							| 13 | 10 12 | elind |  |-  ( ( K e. Proset /\ x e. B ) -> <. x , x >. e. ( ( le ` K ) i^i ( B X. B ) ) ) | 
						
							| 14 |  | opeq2 |  |-  ( y = x -> <. x , y >. = <. x , x >. ) | 
						
							| 15 | 14 | eleq1d |  |-  ( y = x -> ( <. x , y >. e. ( ( le ` K ) i^i ( B X. B ) ) <-> <. x , x >. e. ( ( le ` K ) i^i ( B X. B ) ) ) ) | 
						
							| 16 | 5 15 | spcev |  |-  ( <. x , x >. e. ( ( le ` K ) i^i ( B X. B ) ) -> E. y <. x , y >. e. ( ( le ` K ) i^i ( B X. B ) ) ) | 
						
							| 17 | 13 16 | syl |  |-  ( ( K e. Proset /\ x e. B ) -> E. y <. x , y >. e. ( ( le ` K ) i^i ( B X. B ) ) ) | 
						
							| 18 | 17 | ex |  |-  ( K e. Proset -> ( x e. B -> E. y <. x , y >. e. ( ( le ` K ) i^i ( B X. B ) ) ) ) | 
						
							| 19 |  | elinel2 |  |-  ( <. x , y >. e. ( ( le ` K ) i^i ( B X. B ) ) -> <. x , y >. e. ( B X. B ) ) | 
						
							| 20 |  | opelxp1 |  |-  ( <. x , y >. e. ( B X. B ) -> x e. B ) | 
						
							| 21 | 19 20 | syl |  |-  ( <. x , y >. e. ( ( le ` K ) i^i ( B X. B ) ) -> x e. B ) | 
						
							| 22 | 21 | exlimiv |  |-  ( E. y <. x , y >. e. ( ( le ` K ) i^i ( B X. B ) ) -> x e. B ) | 
						
							| 23 | 18 22 | impbid1 |  |-  ( K e. Proset -> ( x e. B <-> E. y <. x , y >. e. ( ( le ` K ) i^i ( B X. B ) ) ) ) | 
						
							| 24 | 6 23 | bitr4id |  |-  ( K e. Proset -> ( x e. dom ( ( le ` K ) i^i ( B X. B ) ) <-> x e. B ) ) | 
						
							| 25 | 4 24 | bitrid |  |-  ( K e. Proset -> ( x e. dom .<_ <-> x e. B ) ) | 
						
							| 26 | 25 | eqrdv |  |-  ( K e. Proset -> dom .<_ = B ) |