Metamath Proof Explorer


Theorem prsref

Description: "Less than or equal to" is reflexive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses isprs.b
|- B = ( Base ` K )
isprs.l
|- .<_ = ( le ` K )
Assertion prsref
|- ( ( K e. Proset /\ X e. B ) -> X .<_ X )

Proof

Step Hyp Ref Expression
1 isprs.b
 |-  B = ( Base ` K )
2 isprs.l
 |-  .<_ = ( le ` K )
3 id
 |-  ( X e. B -> X e. B )
4 3 3 3 3jca
 |-  ( X e. B -> ( X e. B /\ X e. B /\ X e. B ) )
5 1 2 prslem
 |-  ( ( K e. Proset /\ ( X e. B /\ X e. B /\ X e. B ) ) -> ( X .<_ X /\ ( ( X .<_ X /\ X .<_ X ) -> X .<_ X ) ) )
6 4 5 sylan2
 |-  ( ( K e. Proset /\ X e. B ) -> ( X .<_ X /\ ( ( X .<_ X /\ X .<_ X ) -> X .<_ X ) ) )
7 6 simpld
 |-  ( ( K e. Proset /\ X e. B ) -> X .<_ X )