Description: "Less than or equal to" is reflexive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isprs.b | |- B = ( Base ` K ) |
|
isprs.l | |- .<_ = ( le ` K ) |
||
Assertion | prsref | |- ( ( K e. Proset /\ X e. B ) -> X .<_ X ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isprs.b | |- B = ( Base ` K ) |
|
2 | isprs.l | |- .<_ = ( le ` K ) |
|
3 | id | |- ( X e. B -> X e. B ) |
|
4 | 3 3 3 | 3jca | |- ( X e. B -> ( X e. B /\ X e. B /\ X e. B ) ) |
5 | 1 2 | prslem | |- ( ( K e. Proset /\ ( X e. B /\ X e. B /\ X e. B ) ) -> ( X .<_ X /\ ( ( X .<_ X /\ X .<_ X ) -> X .<_ X ) ) ) |
6 | 4 5 | sylan2 | |- ( ( K e. Proset /\ X e. B ) -> ( X .<_ X /\ ( ( X .<_ X /\ X .<_ X ) -> X .<_ X ) ) ) |
7 | 6 | simpld | |- ( ( K e. Proset /\ X e. B ) -> X .<_ X ) |