Step |
Hyp |
Ref |
Expression |
1 |
|
enrer |
|- ~R Er ( P. X. P. ) |
2 |
|
erdm |
|- ( ~R Er ( P. X. P. ) -> dom ~R = ( P. X. P. ) ) |
3 |
1 2
|
ax-mp |
|- dom ~R = ( P. X. P. ) |
4 |
|
simprll |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> A = [ <. w , v >. ] ~R ) |
5 |
|
simpll |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> A e. ( ( P. X. P. ) /. ~R ) ) |
6 |
4 5
|
eqeltrrd |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> [ <. w , v >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) |
7 |
|
ecelqsdm |
|- ( ( dom ~R = ( P. X. P. ) /\ [ <. w , v >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) -> <. w , v >. e. ( P. X. P. ) ) |
8 |
3 6 7
|
sylancr |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> <. w , v >. e. ( P. X. P. ) ) |
9 |
|
opelxp |
|- ( <. w , v >. e. ( P. X. P. ) <-> ( w e. P. /\ v e. P. ) ) |
10 |
8 9
|
sylib |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( w e. P. /\ v e. P. ) ) |
11 |
|
simprrl |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> A = [ <. s , f >. ] ~R ) |
12 |
11 5
|
eqeltrrd |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> [ <. s , f >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) |
13 |
|
ecelqsdm |
|- ( ( dom ~R = ( P. X. P. ) /\ [ <. s , f >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) -> <. s , f >. e. ( P. X. P. ) ) |
14 |
3 12 13
|
sylancr |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> <. s , f >. e. ( P. X. P. ) ) |
15 |
|
opelxp |
|- ( <. s , f >. e. ( P. X. P. ) <-> ( s e. P. /\ f e. P. ) ) |
16 |
14 15
|
sylib |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( s e. P. /\ f e. P. ) ) |
17 |
10 16
|
jca |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( ( w e. P. /\ v e. P. ) /\ ( s e. P. /\ f e. P. ) ) ) |
18 |
|
simprlr |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> B = [ <. u , t >. ] ~R ) |
19 |
|
simplr |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> B e. ( ( P. X. P. ) /. ~R ) ) |
20 |
18 19
|
eqeltrrd |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> [ <. u , t >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) |
21 |
|
ecelqsdm |
|- ( ( dom ~R = ( P. X. P. ) /\ [ <. u , t >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) -> <. u , t >. e. ( P. X. P. ) ) |
22 |
3 20 21
|
sylancr |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> <. u , t >. e. ( P. X. P. ) ) |
23 |
|
opelxp |
|- ( <. u , t >. e. ( P. X. P. ) <-> ( u e. P. /\ t e. P. ) ) |
24 |
22 23
|
sylib |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( u e. P. /\ t e. P. ) ) |
25 |
|
simprrr |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> B = [ <. g , h >. ] ~R ) |
26 |
25 19
|
eqeltrrd |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> [ <. g , h >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) |
27 |
|
ecelqsdm |
|- ( ( dom ~R = ( P. X. P. ) /\ [ <. g , h >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) -> <. g , h >. e. ( P. X. P. ) ) |
28 |
3 26 27
|
sylancr |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> <. g , h >. e. ( P. X. P. ) ) |
29 |
|
opelxp |
|- ( <. g , h >. e. ( P. X. P. ) <-> ( g e. P. /\ h e. P. ) ) |
30 |
28 29
|
sylib |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( g e. P. /\ h e. P. ) ) |
31 |
24 30
|
jca |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( ( u e. P. /\ t e. P. ) /\ ( g e. P. /\ h e. P. ) ) ) |
32 |
4 11
|
eqtr3d |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> [ <. w , v >. ] ~R = [ <. s , f >. ] ~R ) |
33 |
1
|
a1i |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ~R Er ( P. X. P. ) ) |
34 |
33 8
|
erth |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( <. w , v >. ~R <. s , f >. <-> [ <. w , v >. ] ~R = [ <. s , f >. ] ~R ) ) |
35 |
32 34
|
mpbird |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> <. w , v >. ~R <. s , f >. ) |
36 |
|
df-enr |
|- ~R = { <. x , y >. | ( ( x e. ( P. X. P. ) /\ y e. ( P. X. P. ) ) /\ E. a E. b E. c E. d ( ( x = <. a , b >. /\ y = <. c , d >. ) /\ ( a +P. d ) = ( b +P. c ) ) ) } |
37 |
36
|
ecopoveq |
|- ( ( ( w e. P. /\ v e. P. ) /\ ( s e. P. /\ f e. P. ) ) -> ( <. w , v >. ~R <. s , f >. <-> ( w +P. f ) = ( v +P. s ) ) ) |
38 |
10 16 37
|
syl2anc |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( <. w , v >. ~R <. s , f >. <-> ( w +P. f ) = ( v +P. s ) ) ) |
39 |
35 38
|
mpbid |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( w +P. f ) = ( v +P. s ) ) |
40 |
18 25
|
eqtr3d |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> [ <. u , t >. ] ~R = [ <. g , h >. ] ~R ) |
41 |
33 22
|
erth |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( <. u , t >. ~R <. g , h >. <-> [ <. u , t >. ] ~R = [ <. g , h >. ] ~R ) ) |
42 |
40 41
|
mpbird |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> <. u , t >. ~R <. g , h >. ) |
43 |
36
|
ecopoveq |
|- ( ( ( u e. P. /\ t e. P. ) /\ ( g e. P. /\ h e. P. ) ) -> ( <. u , t >. ~R <. g , h >. <-> ( u +P. h ) = ( t +P. g ) ) ) |
44 |
24 30 43
|
syl2anc |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( <. u , t >. ~R <. g , h >. <-> ( u +P. h ) = ( t +P. g ) ) ) |
45 |
42 44
|
mpbid |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( u +P. h ) = ( t +P. g ) ) |
46 |
39 45
|
jca |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( ( w +P. f ) = ( v +P. s ) /\ ( u +P. h ) = ( t +P. g ) ) ) |
47 |
17 31 46
|
jca31 |
|- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( ( ( ( w e. P. /\ v e. P. ) /\ ( s e. P. /\ f e. P. ) ) /\ ( ( u e. P. /\ t e. P. ) /\ ( g e. P. /\ h e. P. ) ) ) /\ ( ( w +P. f ) = ( v +P. s ) /\ ( u +P. h ) = ( t +P. g ) ) ) ) |