Step |
Hyp |
Ref |
Expression |
1 |
|
ordtNEW.b |
|- B = ( Base ` K ) |
2 |
|
ordtNEW.l |
|- .<_ = ( ( le ` K ) i^i ( B X. B ) ) |
3 |
2
|
rneqi |
|- ran .<_ = ran ( ( le ` K ) i^i ( B X. B ) ) |
4 |
3
|
eleq2i |
|- ( x e. ran .<_ <-> x e. ran ( ( le ` K ) i^i ( B X. B ) ) ) |
5 |
|
vex |
|- x e. _V |
6 |
5
|
elrn2 |
|- ( x e. ran ( ( le ` K ) i^i ( B X. B ) ) <-> E. y <. y , x >. e. ( ( le ` K ) i^i ( B X. B ) ) ) |
7 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
8 |
1 7
|
prsref |
|- ( ( K e. Proset /\ x e. B ) -> x ( le ` K ) x ) |
9 |
|
df-br |
|- ( x ( le ` K ) x <-> <. x , x >. e. ( le ` K ) ) |
10 |
8 9
|
sylib |
|- ( ( K e. Proset /\ x e. B ) -> <. x , x >. e. ( le ` K ) ) |
11 |
|
simpr |
|- ( ( K e. Proset /\ x e. B ) -> x e. B ) |
12 |
11 11
|
opelxpd |
|- ( ( K e. Proset /\ x e. B ) -> <. x , x >. e. ( B X. B ) ) |
13 |
10 12
|
elind |
|- ( ( K e. Proset /\ x e. B ) -> <. x , x >. e. ( ( le ` K ) i^i ( B X. B ) ) ) |
14 |
|
opeq1 |
|- ( y = x -> <. y , x >. = <. x , x >. ) |
15 |
14
|
eleq1d |
|- ( y = x -> ( <. y , x >. e. ( ( le ` K ) i^i ( B X. B ) ) <-> <. x , x >. e. ( ( le ` K ) i^i ( B X. B ) ) ) ) |
16 |
5 15
|
spcev |
|- ( <. x , x >. e. ( ( le ` K ) i^i ( B X. B ) ) -> E. y <. y , x >. e. ( ( le ` K ) i^i ( B X. B ) ) ) |
17 |
13 16
|
syl |
|- ( ( K e. Proset /\ x e. B ) -> E. y <. y , x >. e. ( ( le ` K ) i^i ( B X. B ) ) ) |
18 |
17
|
ex |
|- ( K e. Proset -> ( x e. B -> E. y <. y , x >. e. ( ( le ` K ) i^i ( B X. B ) ) ) ) |
19 |
|
elinel2 |
|- ( <. y , x >. e. ( ( le ` K ) i^i ( B X. B ) ) -> <. y , x >. e. ( B X. B ) ) |
20 |
|
opelxp2 |
|- ( <. y , x >. e. ( B X. B ) -> x e. B ) |
21 |
19 20
|
syl |
|- ( <. y , x >. e. ( ( le ` K ) i^i ( B X. B ) ) -> x e. B ) |
22 |
21
|
exlimiv |
|- ( E. y <. y , x >. e. ( ( le ` K ) i^i ( B X. B ) ) -> x e. B ) |
23 |
18 22
|
impbid1 |
|- ( K e. Proset -> ( x e. B <-> E. y <. y , x >. e. ( ( le ` K ) i^i ( B X. B ) ) ) ) |
24 |
6 23
|
bitr4id |
|- ( K e. Proset -> ( x e. ran ( ( le ` K ) i^i ( B X. B ) ) <-> x e. B ) ) |
25 |
4 24
|
syl5bb |
|- ( K e. Proset -> ( x e. ran .<_ <-> x e. B ) ) |
26 |
25
|
eqrdv |
|- ( K e. Proset -> ran .<_ = B ) |