Metamath Proof Explorer


Theorem prssbd

Description: If a pair is a subset of a class, the second element of the pair is an element of that class. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses prssbd.1
|- ( ph -> B e. V )
prssbd.2
|- ( ph -> { A , B } C_ C )
Assertion prssbd
|- ( ph -> B e. C )

Proof

Step Hyp Ref Expression
1 prssbd.1
 |-  ( ph -> B e. V )
2 prssbd.2
 |-  ( ph -> { A , B } C_ C )
3 simpr
 |-  ( ( ph /\ A e. _V ) -> A e. _V )
4 1 adantr
 |-  ( ( ph /\ A e. _V ) -> B e. V )
5 2 adantr
 |-  ( ( ph /\ A e. _V ) -> { A , B } C_ C )
6 prssg
 |-  ( ( A e. _V /\ B e. V ) -> ( ( A e. C /\ B e. C ) <-> { A , B } C_ C ) )
7 6 biimpar
 |-  ( ( ( A e. _V /\ B e. V ) /\ { A , B } C_ C ) -> ( A e. C /\ B e. C ) )
8 3 4 5 7 syl21anc
 |-  ( ( ph /\ A e. _V ) -> ( A e. C /\ B e. C ) )
9 8 simprd
 |-  ( ( ph /\ A e. _V ) -> B e. C )
10 prprc1
 |-  ( -. A e. _V -> { A , B } = { B } )
11 10 adantl
 |-  ( ( ph /\ -. A e. _V ) -> { A , B } = { B } )
12 2 adantr
 |-  ( ( ph /\ -. A e. _V ) -> { A , B } C_ C )
13 11 12 eqsstrrd
 |-  ( ( ph /\ -. A e. _V ) -> { B } C_ C )
14 snssg
 |-  ( B e. V -> ( B e. C <-> { B } C_ C ) )
15 14 biimpar
 |-  ( ( B e. V /\ { B } C_ C ) -> B e. C )
16 1 13 15 syl2an2r
 |-  ( ( ph /\ -. A e. _V ) -> B e. C )
17 9 16 pm2.61dan
 |-  ( ph -> B e. C )