Metamath Proof Explorer


Theorem prssd

Description: Deduction version of prssi : A pair of elements of a class is a subset of the class. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses prssd.1
|- ( ph -> A e. C )
prssd.2
|- ( ph -> B e. C )
Assertion prssd
|- ( ph -> { A , B } C_ C )

Proof

Step Hyp Ref Expression
1 prssd.1
 |-  ( ph -> A e. C )
2 prssd.2
 |-  ( ph -> B e. C )
3 prssi
 |-  ( ( A e. C /\ B e. C ) -> { A , B } C_ C )
4 1 2 3 syl2anc
 |-  ( ph -> { A , B } C_ C )