Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by Thierry Arnoux, 3-Oct-2016) (Revised by NM, 18-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | prsspwg | |- ( ( A e. V /\ B e. W ) -> ( { A , B } C_ ~P C <-> ( A C_ C /\ B C_ C ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssg | |- ( ( A e. V /\ B e. W ) -> ( ( A e. ~P C /\ B e. ~P C ) <-> { A , B } C_ ~P C ) ) |
|
2 | elpwg | |- ( A e. V -> ( A e. ~P C <-> A C_ C ) ) |
|
3 | elpwg | |- ( B e. W -> ( B e. ~P C <-> B C_ C ) ) |
|
4 | 2 3 | bi2anan9 | |- ( ( A e. V /\ B e. W ) -> ( ( A e. ~P C /\ B e. ~P C ) <-> ( A C_ C /\ B C_ C ) ) ) |
5 | 1 4 | bitr3d | |- ( ( A e. V /\ B e. W ) -> ( { A , B } C_ ~P C <-> ( A C_ C /\ B C_ C ) ) ) |