Metamath Proof Explorer


Theorem prsss

Description: Relation of a subproset. (Contributed by Thierry Arnoux, 13-Sep-2018)

Ref Expression
Hypotheses ordtNEW.b
|- B = ( Base ` K )
ordtNEW.l
|- .<_ = ( ( le ` K ) i^i ( B X. B ) )
Assertion prsss
|- ( ( K e. Proset /\ A C_ B ) -> ( .<_ i^i ( A X. A ) ) = ( ( le ` K ) i^i ( A X. A ) ) )

Proof

Step Hyp Ref Expression
1 ordtNEW.b
 |-  B = ( Base ` K )
2 ordtNEW.l
 |-  .<_ = ( ( le ` K ) i^i ( B X. B ) )
3 2 ineq1i
 |-  ( .<_ i^i ( A X. A ) ) = ( ( ( le ` K ) i^i ( B X. B ) ) i^i ( A X. A ) )
4 inass
 |-  ( ( ( le ` K ) i^i ( B X. B ) ) i^i ( A X. A ) ) = ( ( le ` K ) i^i ( ( B X. B ) i^i ( A X. A ) ) )
5 3 4 eqtri
 |-  ( .<_ i^i ( A X. A ) ) = ( ( le ` K ) i^i ( ( B X. B ) i^i ( A X. A ) ) )
6 xpss12
 |-  ( ( A C_ B /\ A C_ B ) -> ( A X. A ) C_ ( B X. B ) )
7 6 anidms
 |-  ( A C_ B -> ( A X. A ) C_ ( B X. B ) )
8 sseqin2
 |-  ( ( A X. A ) C_ ( B X. B ) <-> ( ( B X. B ) i^i ( A X. A ) ) = ( A X. A ) )
9 7 8 sylib
 |-  ( A C_ B -> ( ( B X. B ) i^i ( A X. A ) ) = ( A X. A ) )
10 9 ineq2d
 |-  ( A C_ B -> ( ( le ` K ) i^i ( ( B X. B ) i^i ( A X. A ) ) ) = ( ( le ` K ) i^i ( A X. A ) ) )
11 5 10 syl5eq
 |-  ( A C_ B -> ( .<_ i^i ( A X. A ) ) = ( ( le ` K ) i^i ( A X. A ) ) )
12 11 adantl
 |-  ( ( K e. Proset /\ A C_ B ) -> ( .<_ i^i ( A X. A ) ) = ( ( le ` K ) i^i ( A X. A ) ) )