Step |
Hyp |
Ref |
Expression |
1 |
|
ordtNEW.b |
|- B = ( Base ` K ) |
2 |
|
ordtNEW.l |
|- .<_ = ( ( le ` K ) i^i ( B X. B ) ) |
3 |
2
|
ineq1i |
|- ( .<_ i^i ( A X. A ) ) = ( ( ( le ` K ) i^i ( B X. B ) ) i^i ( A X. A ) ) |
4 |
|
inass |
|- ( ( ( le ` K ) i^i ( B X. B ) ) i^i ( A X. A ) ) = ( ( le ` K ) i^i ( ( B X. B ) i^i ( A X. A ) ) ) |
5 |
3 4
|
eqtri |
|- ( .<_ i^i ( A X. A ) ) = ( ( le ` K ) i^i ( ( B X. B ) i^i ( A X. A ) ) ) |
6 |
|
xpss12 |
|- ( ( A C_ B /\ A C_ B ) -> ( A X. A ) C_ ( B X. B ) ) |
7 |
6
|
anidms |
|- ( A C_ B -> ( A X. A ) C_ ( B X. B ) ) |
8 |
|
sseqin2 |
|- ( ( A X. A ) C_ ( B X. B ) <-> ( ( B X. B ) i^i ( A X. A ) ) = ( A X. A ) ) |
9 |
7 8
|
sylib |
|- ( A C_ B -> ( ( B X. B ) i^i ( A X. A ) ) = ( A X. A ) ) |
10 |
9
|
ineq2d |
|- ( A C_ B -> ( ( le ` K ) i^i ( ( B X. B ) i^i ( A X. A ) ) ) = ( ( le ` K ) i^i ( A X. A ) ) ) |
11 |
5 10
|
syl5eq |
|- ( A C_ B -> ( .<_ i^i ( A X. A ) ) = ( ( le ` K ) i^i ( A X. A ) ) ) |
12 |
11
|
adantl |
|- ( ( K e. Proset /\ A C_ B ) -> ( .<_ i^i ( A X. A ) ) = ( ( le ` K ) i^i ( A X. A ) ) ) |