Metamath Proof Explorer


Theorem prstcleval

Description: Value of the less-than-or-equal-to relation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024) (Proof shortened by AV, 12-Nov-2024)

Ref Expression
Hypotheses prstcnid.c
|- ( ph -> C = ( ProsetToCat ` K ) )
prstcnid.k
|- ( ph -> K e. Proset )
prstcle.l
|- ( ph -> .<_ = ( le ` K ) )
Assertion prstcleval
|- ( ph -> .<_ = ( le ` C ) )

Proof

Step Hyp Ref Expression
1 prstcnid.c
 |-  ( ph -> C = ( ProsetToCat ` K ) )
2 prstcnid.k
 |-  ( ph -> K e. Proset )
3 prstcle.l
 |-  ( ph -> .<_ = ( le ` K ) )
4 pleid
 |-  le = Slot ( le ` ndx )
5 slotsdifplendx2
 |-  ( ( le ` ndx ) =/= ( comp ` ndx ) /\ ( le ` ndx ) =/= ( Hom ` ndx ) )
6 5 simpli
 |-  ( le ` ndx ) =/= ( comp ` ndx )
7 5 simpri
 |-  ( le ` ndx ) =/= ( Hom ` ndx )
8 1 2 4 6 7 prstcnid
 |-  ( ph -> ( le ` K ) = ( le ` C ) )
9 3 8 eqtrd
 |-  ( ph -> .<_ = ( le ` C ) )