Metamath Proof Explorer


Theorem prstcocval

Description: Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024) (Proof shortened by AV, 12-Nov-2024)

Ref Expression
Hypotheses prstcnid.c
|- ( ph -> C = ( ProsetToCat ` K ) )
prstcnid.k
|- ( ph -> K e. Proset )
prstcoc.oc
|- ( ph -> ._|_ = ( oc ` K ) )
Assertion prstcocval
|- ( ph -> ._|_ = ( oc ` C ) )

Proof

Step Hyp Ref Expression
1 prstcnid.c
 |-  ( ph -> C = ( ProsetToCat ` K ) )
2 prstcnid.k
 |-  ( ph -> K e. Proset )
3 prstcoc.oc
 |-  ( ph -> ._|_ = ( oc ` K ) )
4 ocid
 |-  oc = Slot ( oc ` ndx )
5 slotsdifocndx
 |-  ( ( oc ` ndx ) =/= ( comp ` ndx ) /\ ( oc ` ndx ) =/= ( Hom ` ndx ) )
6 5 simpli
 |-  ( oc ` ndx ) =/= ( comp ` ndx )
7 5 simpri
 |-  ( oc ` ndx ) =/= ( Hom ` ndx )
8 1 2 4 6 7 prstcnid
 |-  ( ph -> ( oc ` K ) = ( oc ` C ) )
9 3 8 eqtrd
 |-  ( ph -> ._|_ = ( oc ` C ) )