Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A <_ B ) |
2 |
|
xrleloe |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> ( A < B \/ A = B ) ) ) |
3 |
2
|
3adant3 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( A <_ B <-> ( A < B \/ A = B ) ) ) |
4 |
|
df-pr |
|- { A , B } = ( { A } u. { B } ) |
5 |
4
|
uneq2i |
|- ( ( A (,) B ) u. { A , B } ) = ( ( A (,) B ) u. ( { A } u. { B } ) ) |
6 |
|
unass |
|- ( ( ( A (,) B ) u. { A } ) u. { B } ) = ( ( A (,) B ) u. ( { A } u. { B } ) ) |
7 |
5 6
|
eqtr4i |
|- ( ( A (,) B ) u. { A , B } ) = ( ( ( A (,) B ) u. { A } ) u. { B } ) |
8 |
|
uncom |
|- ( ( A (,) B ) u. { A } ) = ( { A } u. ( A (,) B ) ) |
9 |
|
snunioo |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( { A } u. ( A (,) B ) ) = ( A [,) B ) ) |
10 |
8 9
|
eqtrid |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. { A } ) = ( A [,) B ) ) |
11 |
10
|
uneq1d |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( ( A (,) B ) u. { A } ) u. { B } ) = ( ( A [,) B ) u. { B } ) ) |
12 |
7 11
|
eqtrid |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. { A , B } ) = ( ( A [,) B ) u. { B } ) ) |
13 |
12
|
3expa |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( ( A (,) B ) u. { A , B } ) = ( ( A [,) B ) u. { B } ) ) |
14 |
13
|
3adantl3 |
|- ( ( ( A e. RR* /\ B e. RR* /\ A <_ B ) /\ A < B ) -> ( ( A (,) B ) u. { A , B } ) = ( ( A [,) B ) u. { B } ) ) |
15 |
|
snunico |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A [,) B ) u. { B } ) = ( A [,] B ) ) |
16 |
15
|
adantr |
|- ( ( ( A e. RR* /\ B e. RR* /\ A <_ B ) /\ A < B ) -> ( ( A [,) B ) u. { B } ) = ( A [,] B ) ) |
17 |
14 16
|
eqtrd |
|- ( ( ( A e. RR* /\ B e. RR* /\ A <_ B ) /\ A < B ) -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) |
18 |
17
|
ex |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( A < B -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) ) |
19 |
|
iccid |
|- ( A e. RR* -> ( A [,] A ) = { A } ) |
20 |
19
|
3ad2ant1 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( A [,] A ) = { A } ) |
21 |
20
|
eqcomd |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> { A } = ( A [,] A ) ) |
22 |
|
uncom |
|- ( (/) u. { A } ) = ( { A } u. (/) ) |
23 |
|
un0 |
|- ( { A } u. (/) ) = { A } |
24 |
22 23
|
eqtri |
|- ( (/) u. { A } ) = { A } |
25 |
|
iooid |
|- ( A (,) A ) = (/) |
26 |
|
oveq2 |
|- ( A = B -> ( A (,) A ) = ( A (,) B ) ) |
27 |
25 26
|
eqtr3id |
|- ( A = B -> (/) = ( A (,) B ) ) |
28 |
|
dfsn2 |
|- { A } = { A , A } |
29 |
|
preq2 |
|- ( A = B -> { A , A } = { A , B } ) |
30 |
28 29
|
eqtrid |
|- ( A = B -> { A } = { A , B } ) |
31 |
27 30
|
uneq12d |
|- ( A = B -> ( (/) u. { A } ) = ( ( A (,) B ) u. { A , B } ) ) |
32 |
24 31
|
eqtr3id |
|- ( A = B -> { A } = ( ( A (,) B ) u. { A , B } ) ) |
33 |
|
oveq2 |
|- ( A = B -> ( A [,] A ) = ( A [,] B ) ) |
34 |
32 33
|
eqeq12d |
|- ( A = B -> ( { A } = ( A [,] A ) <-> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) ) |
35 |
21 34
|
syl5ibcom |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( A = B -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) ) |
36 |
18 35
|
jaod |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A < B \/ A = B ) -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) ) |
37 |
3 36
|
sylbid |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( A <_ B -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) ) |
38 |
1 37
|
mpd |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) |