Description: The "proves" relation on a set. A wff encoded as U is true in a model M iff for every valuation s e. ( M ^m _om ) , the interpretation of the wff using the membership relation on M is true. (Contributed by AV, 5-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prv | |- ( ( M e. V /\ U e. W ) -> ( M |= U <-> ( M SatE U ) = ( M ^m _om ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oveq12 | |- ( ( m = M /\ u = U ) -> ( m SatE u ) = ( M SatE U ) ) | |
| 2 | simpl | |- ( ( m = M /\ u = U ) -> m = M ) | |
| 3 | 2 | oveq1d | |- ( ( m = M /\ u = U ) -> ( m ^m _om ) = ( M ^m _om ) ) | 
| 4 | 1 3 | eqeq12d | |- ( ( m = M /\ u = U ) -> ( ( m SatE u ) = ( m ^m _om ) <-> ( M SatE U ) = ( M ^m _om ) ) ) | 
| 5 | df-prv |  |-  |= = { <. m , u >. | ( m SatE u ) = ( m ^m _om ) } | |
| 6 | 4 5 | brabga | |- ( ( M e. V /\ U e. W ) -> ( M |= U <-> ( M SatE U ) = ( M ^m _om ) ) ) |