| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sate0 |  |-  ( U e. ( Fmla ` _om ) -> ( (/) SatE U ) = ( ( ( (/) Sat (/) ) ` _om ) ` U ) ) | 
						
							| 2 |  | peano1 |  |-  (/) e. _om | 
						
							| 3 | 2 | n0ii |  |-  -. _om = (/) | 
						
							| 4 | 3 | intnan |  |-  -. ( x = (/) /\ _om = (/) ) | 
						
							| 5 | 4 | a1i |  |-  ( U e. ( Fmla ` _om ) -> -. ( x = (/) /\ _om = (/) ) ) | 
						
							| 6 |  | f00 |  |-  ( x : _om --> (/) <-> ( x = (/) /\ _om = (/) ) ) | 
						
							| 7 | 5 6 | sylnibr |  |-  ( U e. ( Fmla ` _om ) -> -. x : _om --> (/) ) | 
						
							| 8 |  | 0ex |  |-  (/) e. _V | 
						
							| 9 | 8 8 | pm3.2i |  |-  ( (/) e. _V /\ (/) e. _V ) | 
						
							| 10 |  | satfvel |  |-  ( ( ( (/) e. _V /\ (/) e. _V ) /\ U e. ( Fmla ` _om ) /\ x e. ( ( ( (/) Sat (/) ) ` _om ) ` U ) ) -> x : _om --> (/) ) | 
						
							| 11 | 9 10 | mp3an1 |  |-  ( ( U e. ( Fmla ` _om ) /\ x e. ( ( ( (/) Sat (/) ) ` _om ) ` U ) ) -> x : _om --> (/) ) | 
						
							| 12 | 7 11 | mtand |  |-  ( U e. ( Fmla ` _om ) -> -. x e. ( ( ( (/) Sat (/) ) ` _om ) ` U ) ) | 
						
							| 13 | 12 | alrimiv |  |-  ( U e. ( Fmla ` _om ) -> A. x -. x e. ( ( ( (/) Sat (/) ) ` _om ) ` U ) ) | 
						
							| 14 |  | eq0 |  |-  ( ( ( ( (/) Sat (/) ) ` _om ) ` U ) = (/) <-> A. x -. x e. ( ( ( (/) Sat (/) ) ` _om ) ` U ) ) | 
						
							| 15 | 13 14 | sylibr |  |-  ( U e. ( Fmla ` _om ) -> ( ( ( (/) Sat (/) ) ` _om ) ` U ) = (/) ) | 
						
							| 16 | 1 15 | eqtrd |  |-  ( U e. ( Fmla ` _om ) -> ( (/) SatE U ) = (/) ) | 
						
							| 17 |  | prv |  |-  ( ( (/) e. _V /\ U e. ( Fmla ` _om ) ) -> ( (/) |= U <-> ( (/) SatE U ) = ( (/) ^m _om ) ) ) | 
						
							| 18 | 8 17 | mpan |  |-  ( U e. ( Fmla ` _om ) -> ( (/) |= U <-> ( (/) SatE U ) = ( (/) ^m _om ) ) ) | 
						
							| 19 | 2 | ne0ii |  |-  _om =/= (/) | 
						
							| 20 |  | map0b |  |-  ( _om =/= (/) -> ( (/) ^m _om ) = (/) ) | 
						
							| 21 | 19 20 | mp1i |  |-  ( U e. ( Fmla ` _om ) -> ( (/) ^m _om ) = (/) ) | 
						
							| 22 | 21 | eqeq2d |  |-  ( U e. ( Fmla ` _om ) -> ( ( (/) SatE U ) = ( (/) ^m _om ) <-> ( (/) SatE U ) = (/) ) ) | 
						
							| 23 | 18 22 | bitrd |  |-  ( U e. ( Fmla ` _om ) -> ( (/) |= U <-> ( (/) SatE U ) = (/) ) ) | 
						
							| 24 | 16 23 | mpbird |  |-  ( U e. ( Fmla ` _om ) -> (/) |= U ) |